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Foreword from the Symposium Chairs

Liesbeth De Mol

1 and Giuseppe Primiero

2

Given the significance of computing for modern society, the rele-
vance of its history and philosophy can hardly be overestimated. Both
the history and philosophy of computing only started to develop as
real disciplines in the ’80s and ’90s of the previous century, with the
foundation of journals (e.g. the IEEE Annals on the History of Com-
puting, Minds and Machines and the like) and associations (SIGCIS,
IACAP, . . . ), and the organization of conferences and workshops on
a regular basis. A historical awareness of the evolution of computing
not only helps clarifying the complex structure of the computing sci-
ences, but it also provides an insight in what computing was, is and
maybe could be in the future. Philosophy, on the other hand, helps to
tackle some of the fundamental problems of computing: the seman-
tic, ontological and functional nature of hardware and software; the
relation of programs to proofs and, in another direction, of programs
to users; the significance of notions as those of implementation and
simulation, and many more. The aim of this conference is to zoom
into one fundamental aspect of computing, that is the foundational
and the historical problems and developments related to the science
of programming.

Alan Turing himself was driven by the fundamental question of
‘what are the possible processes which can be carried out in comput-
ing a number’. His answer is well-known, and today we understand
a program as a rather complex instance of what became known as
the Turing Machine. What is less well-known, is that Turing also
wrote one of the first programming manuals ever for the Ferranti
Mark I, where one feels the symbolic machine hiding on the back
of the Manchester hardware. This was only the beginning of a large
research area that today involves logicians, programmers and engi-
neers in the design, understanding and realization of programming
languages.

That a logico-mathematical-physical object called ‘program’ is so
controversial, even though its very nature is mostly hidden away, is
rooted in the range of problems, processes and objects that can be
solved, simulated, approximated and generated by way of its execu-
tion. Given its widespread impact on our lives, it becomes a respon-
sibility of the philosopher and of the historian to study the science of
programming. The historical and philosophical reflection on the sci-
ence of programming is the main topic at the core of this workshop.
Our programme includes contributions in

1. the history of computational systems, hardware and software
2. the foundational issues and paradigms of programming (semantics

and syntax, distributed, secure, cloud, functional, object-oriented,
etc.).

Our wish is to bring forth to the scientific community a deep under-
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standing and critical view of the problems related to the scientific
‘paradigm’ represented by the science of programming. The kind of
questions analyzed and relevant to our task are:

• What was and is the significance of hardware developments for
the development of software (and vice versa)?

• In how far can the analogue and special-purpose machines built
before the 40s be understood as programs and what does this mean
for our conception of ‘program’ today?

• How important has been the hands-off vs. the hands-on approach
for the development of programming?

• What is the influence of models of computability like Church’s
lambda-calculus on the development of programming languages?

• Which case studies from the history of programming can tell us
today something about future directions?

• Is programming a science or a technology?
• In how far does it make sense to speak about programming

paradigms in the sense of Kuhn?
• What are the novel and most interesting approaches to the design

of programs?
• How do we understand programs as syntactical-semantical ob-

jects?
• What is the nature of the relation between algorithms and pro-

grams? What is a program?
• Which problems are the most pressing ones and why are they rel-

evant to more than just programmers?
• How can epistemology profit from the understanding of programs’

behavior and structure?
• What legal and socio-economical issues are involved in the cre-

ation, patenting or free-distribution of programs?

The invited speakers for this symposium are Gerard Alberts and
Julian Rohrhuber. Gerard Alberts (University of Amsterdam) is a
well-known historian of computing. He is the series editor of the
Springer book series on the history of computing and one of the ed-
itorial members of the leading journal on the history of computing,
viz. IEEE Annals for the history of computing. He is also the project
leader of the SOFT-EU project. In his talk, he is going to tackle the
rather philosophical question: What does software mean?, by study-
ing how it developed historically. Julian Rohrhuber (Robert Schu-
mann School of Music and Media in Düsseldorf) is a co-developer
of the open source computer language SuperCollider, a language for
real time audio synthesis and algorithmic composition and an experi-
enced live coder. Apart from this more ‘practical’ work, he has made
various contributions to philosophy of science in general and the phi-
losophy of programming in particular. He will present some of his
philosophical reflections on programming. As an additional Special
Event, Julian can also be seen in action during a live performance
on Wednesday July 4th titled “When was the last time you spent a



pleasant evening in a comfortable chair, reading a good program”
(Jon Bentley). Live coding to celebrate the Turing Centennial, by
the Birmingham Ensemble for Electroacoustic Research and Julian
Rohrhuber playing improvised algorithmic network music.

The other contributors to this Symposium and their talks are:

• Wolfgang Brand, Two Approaches to One Task: A Historical Case
Study of the Implementation and Deployment of two Software
Packages for the Design of Light-Weight Structures in Architec-
ture and Civil Engineering

• Selmer Bringsjord and Jinrong Li, On the cognitive science of
computer programming in service of two historic challenges

• Timothy Colburn and Gary Shute, The Role of Types for Program-
mers

• Edgar G. Daylight, A Compilation of Dutch Computing Styles,
1950s–1960s

• Vladimir V. Kitov, Valery V. Shilov, Sergey A. Silantiev, Anatoly
Kitov and ALGEM algorithmic language

• Shintaro Miyazaki, Algorhytmic listening 1949-1962. Auditory
practices of early mainframe computing

• Pierre Mounier-Kuhn, Logic and computing in France: A late con-
vergence

• Allan Olley, Is plugged programming an Oxymoron?
• Uri Pincas, On the Nature of the Relation between Algorithms and

Programs
• Nikolay v. Shilov, Parallel Programming as a Programming

Paradigm

Our programme will be followed by a double session on Philoso-
phy of Computer Science meets AI and Law, organized by Rainhard
Bengez (TU München) and Raymond Turner (University of Essex).

The Symposium on History and Philosophy of Program-
ming is intended as a follow-up to the First International
Conference on History and Philosophy of Computing (www.
computing-conference.ugent.be), a IACAP sponsored
event. The Conference, which took place in November 2011 at Ghent
University, represented a first approach to build a community of
philosophers and historians working in the area of the computational
sciences. The present smaller Symposium will be a bridge to the Sec-
ond edition of the History and Philosophy of Computing Conference,
to be held in October 2013 in Paris. We hope everyone interested
in the historical and systematic study of computational sciences and
their intersections with other sciences and its applications will get
involved in what promises to be a crucial and exciting research area.
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Developing an historical notion of software

Gerard Alberts

1

Simple as it seems to agree that software is more than program-
ming, trying develop a specific notion of software is rather com-
plicated. Today we take an historical approach. What does software
mean when we try to pinpoint it historically? In this talk I will sketch
three steps towards an historical notion of software, followed by a
note on the clarifying effect of this historical exercise.

One may look for early occurrences of the word software and find
these in the era 1955-1960. Admittedly, there is a natural opposi-
tion to the expression hardware, but this will not lead us much fur-
ther than a negative demarcation of software being anything to do
with computers which is not hardware. Historians of computing have
noted that software was given a separate name in the late 1950s when
people were hired to do programming, training or maintenance and
other services around the computer (Martin Campbell-Kelly 2003).
Tom Haigh (2002) adds to this the striking phenomenon that a similar
job of programming might be called coding when done in-house and
software when performed by an external consultant or contractor. Not
only was software soft, it was also ware. By consequence, to pinpoint
the notion of software, we request the assistence of economic histori-
ans. Upon closer inspection, and this is third step, software had a spe-
cific content. The experts hired for the service of getting the machine
to work, would typically be less involved with one dedicated set of
operations like the bookkeeping systems or calculations in a specific
field, but rather with programs to run the machine smoothly. While in
1955 the debates among computer experts were on automatic coding
systems, in the following years such systems evolved into compilers,
languages, and operatings systems (Michael Mahoney 2002; Nathan
Ensmenger 2010; Gerard Alberts 2010). Such were the kind of things
called software: programs that help other programs run smoothly,
translate them, take care of memory management, of input-output.
Software was an indication for the specific kind of programs gen-
erating programs. Historical precision thus yields that software, was
soft and ware and comprised not just any programming but programs
generating programs.

This historical notion considerably adds to technical notions of
software. Even if after a decade, around 1970, for all practical pur-
poses software and programming were taken to be synonyms, it helps
to remind ourselves of the divergent origins. Moreover, it raises the
awareness that the fundamental idea of programs being manipulated
while running took a decade to take foot as a practice. We are tempt to
think that Von Neumann, Goldstine and Burks in 1946 and Wilkes,
Wheeler and Gill in 1951 were aware of this fundamental insight
in programming computing machinery. If they were, it took another
decade for this insight to turn into a practice of programming pro-
grams generating programs: software. Two practical consequences
may be drawn from this historical insight.

1. as the early notion of automatic coding system reveals, software

1 University of Amsterdam, The Netherlands, email: G.Alberts@uva.nl

meant that not only calculating, sorting and dataprocessing were
left to the computer, but that also programming was transferred to
the machine.

2. one of these systems of autocoding came to be called language,
programming language, introduced around 1955. It pays to realize
how deeply intrenched this language metaphor is in the discipline
of computer science.



Algorithmic Complementarity. Some thoughts on

experimental programming and the history of live coding

Julian Rohrhuber

1

Abstract. Today one can say that programming has not only osmot-
ically infused scientific and artistic research alike, but also that those
new contexts elucidate what it may mean to be an algorithm. This
talk will focus on the ‘impatient practices’ of experimental program-
ming, which can never wait till the end, and for which it is essential
that the modification of the program in some way integrates with its
unfolding in time. A contemporary example is live coding, which
performs programming (usually of sound and visuals) as a form of
improvisation.

Early in the history of computer languages, there was already a
need felt for reprogramming processes at runtime. Nevertheless, this
idea was of limited influence, maybe because, with increasing com-
putational power, the fascination with interactive programs eclipsed
the desire for interactive programming. This may not be an accidental
omission, its reasons may also lie in a rather fundamental difficulty,
on which we will focus here.

In itself, the situation is almost obvious: not every part of the
program-as-description has an equivalent in the program-as-process.
Despite each computational process having a dynamic nature, an in-
tegration of programming into the program itself must in principle
remain incomplete. As a result, a programmer is forced to oscillate
between mutually exclusive perspectives. Arguably, this oscillation
reveals a specific internal contradiction within algorithms, a neces-
sary obstacle to semantic transparency. By calling this obstacle algo-

rithmic complementarity, I intend to open it up for a discussion in a
broader conceptual context, linking it with corresponding ideas from
philosophy and physics.

Here a few words about this terminology. Complementarity has
been an influential idea in conceptualising the relation between the
object of investigation, as opposed to the epistemic apparatus and the
history of practice. Originating in the psychology of William James,
where it referred to a subjective split of mutually exclusive observa-
tions, Niels Bohr used it to denote the existence of incommensurable
observables of a quantum system (position vs. momentum, time vs.
energy). Independent of the particular answer Bohr gave, comple-
mentarity raises the question of whether such a coexistence is in-
duced by the experimental system or already present in the subject
matter observed. Accordingly, in the case of programs, we may ask
whether this obstacle is essential to their nature or whether it is a
mere artefact of a specific formalisation. Algorithms, arguably sit-
uated between technical method and mathematical object, make an
interesting candidate for a reconsideration of this discourse.

The existence of an obstacle to semantic transparency within algo-
rithms and their respective programs need not mean a relative impov-
erishment of computation. Conversely, prediction is the wager and

1 Institute for Music and Media, Düsseldorf, email: ju-
lian.rohrhuber@musikundmedien.net

vital tension in every experimental system, as well as in interactive
programming. After the conceptual discussion, I will try to exemplify
this claim by introducing a few examples in the recent history of live

coding. Again and again surfacing in form of symptoms such as an
impossibility of immediacy, I hope this practice will be conceivable
in terms of having algorithmic complementarity as one of its driving
forces.



Two Approaches to one Task:
A Historical Case Study of the Implementation and

Deployment of two Software Packages for the Design of
Light-Weight Structures in Architecture and Civil

Engineering
Wolfgang Brand1

Abstract. The advent of powerful computers during the 1960s en-
abled architects and civil engineers for the first time to design and
construct light-weight structures never dreamed of before. This his-
torical case study describes the implementation and deployment of
two software packages for the design of light-weight structures at
the University of Stuttgart, Germany in the context of the software
engineering and hardware technology around 1970. Both software
packages were used to design the tent-shaped membrane roof of the
Munich Olympic Stadium for the 1972 Olympic Games. One soft-
ware package (ASKA) was based on the Finite Element Method
(FEM), the other package relied on the newly developed Force Den-
sity Method (FDM). The ASKA package had been under develop-
ment since the early 1960s, whereas the development of the second
package had just started. This environment led to two different de-
sign processes and to a rather limited interaction between the two
groups carrying out the work. Both applications proved to be suc-
cessful in creating light-weight structures and the fate of both soft-
ware packages is traced until today. The design of the two software
packages was influenced by the philosophy of structuring problems
in a way appropriate to specific high performance computer architec-
ture’s. Today, this paradigm is still at the core of software engineering
for supercomputers.

1 INTRODUCTION
Since ancient times, design and planning in architecture and civil en-
gineering has been grounded in building models and experimenting.
After the formalisation of mechanics in the 18th and 19th Century,
and the advent of numerical algorithms, the early computing ma-
chines, with their limited capabilities, allowed for the first time the
employment of numerical computations and simulations in architec-
ture and civil engineering during the first half of the 20th Century.

The emergence of high speed electronic computers (supercom-
puters) during the 1960s enabled architects and civil engineers to
study their designs using numerical methods on an even larger scale,
tackling problems of dimensions that have never been reachable be-
fore. These new computational capabilities allowed for the design
and construction of novel structures. Structures that employed new

1 Universität Stuttgart, Historisches Institut, Abteilung für Geschichte der
Naturwissenschaften und Technik, Keplerstraße 17, 70174 Stuttgart, Ger-
many, email: wolfgang.brand@studenten.ims.uni-stuttgart.de

materials and tried to mimic natural shapes. However, such shapes
are of a highly non-linear nature and can be handled only with nu-
merical methods.

While designing the tent-shaped membrane roof of the stadium
for the 1972 Olympic Games in Munich, large scale numerical com-
putations and simulations played a decisive role. Frei Otto (1925–),
architect and head of the Institute for Lightweight Structures at the
University of Stuttgart, had been working and experimenting for a
long time with lightweight tensile and membrane structures, space
frames and their structural properties. The architect Günter Behnisch
(1922–2010) and the civil engineer Jörg Schlaich (1934–), both pro-
fessors at the University of Stuttgart, managed to transform his de-
sign ideas with their working groups into a piece of landmark mem-
brane architecture of steel and glass (see [19] and [24]).

Because there was only a limited time frame to do the calcula-
tions, the architects decided to award the contracts to conduct the
actual calculations for the roof to two working groups that used dif-
ferent approaches. To be able to handle those computations, not only
powerful and fast computers had to be available and new algorithms
had to be developed, but they also had to be implemented in a con-
sistent and reliable way. As always, there are many ways leading to
Rome. This proverb holds in the design and implementation of large
software packages, too.

One group was headed by John H. Argyris (1913–2004), who co-
invented the Finite Element Method (FEM), and was able to use his
approach on the design of the membrane roof. Another group was led
by Klaus Linkwitz (1927–), whose group was able to deploy methods
from geodesy to determine the optimal shape and inner structure of
the constructions. Both groups had to implement their solutions by
either extending existing software packages, as done by Argyris, who
used his ASKA (Automatic System of Kinematic Analysis) package,
or by implementing a new package, as done by the Linkwitz group
(see [1] and [36]).

1.1 The setting

This case study will focus on the time around 1970 during which
these two groups adapted and implemented their software packages
in a hands-on manner. The dynamics of the interaction between the
two groups is studied and the approaches taken are compared and
evaluated. Typical obstacles which had to be overcome are described.



One of them was the quality assurance of the results. One of the
groups did this by calling in the German Army to do manual quality
checks.

It is also shown that basic elements of software engineering, a
well structured and systematic approach to software development
and maintenance, were invented without much interaction with the
emerging discipline of computer science and the further fate of the
two software packages till today will be traced. They are still at the
core of software packages used today.

These developments unfolded on powerful hardware, such as Con-
trol Data’s CDC 6600, which provided sufficient computing power to
users. It is described how the paradigm of high performance comput-
ing evolved and how this paradigm remains largely unchanged un-
til today, being nearly independent of many recent developments in
software engineering and programming language design.

There have been only a limited number of contributions regard-
ing the history of computers in architecture and civil engineering
which are focusing mainly on Computer Aided Design (CAD). To
our knowledge it is for the first time, that numerical software pack-
ages are the object of study and the materials presented have never
before been used in a historical case study. Parts of this study are
based on oral interviews with those who participated in these devel-
opments and university documents never used before.

2 A SHORT NOTE ON THE HISTORY OF
SOFTWARE ENGINEERING

Today, Software Engineering is a well established term in computer
science and the software industry, which dates back to the late 1960s.
During this decade the so-called software crises forced programmers
and academics to reconsider the procedures of software production.
During the early days of computer programming, the code was short,
hand-crafted and could be maintained with reasonable effort. The
first computers which became available after the Second World War
and during the 1950s had rather limited resources. Bytes and words,
today’s standard format for internal data and instructions, were yet
unknown and only introduced by IBM in their System 360 several
years later. Every two or three years, machines were replaced and the
programmers would face new instruction sets and data sizes. Pro-
gram code had to be updated and adapted to the new computing en-
vironment on a regular basis. The first high level programming lan-
guages provided enhanced portability of code and empowered the
programmers to write code of a substantial size. Along with the
length of the code, the complexity increased. And so did the costs
of writing the programs, debugging, and maintaining them over their
life-cycle. During the 1960s, the burden of software development in
this manner became unbearable, both with respect to production time
and economic costs. Software quality was deteriorating and the over-
all impression among those involved was the urgent need for change.
In 1968, at a NATO-sponsored conference, chaired by Friedrich L.
Bauer, the challenges, requirements, and obstacles which had to be
overcome were discussed in detail. This conference not only coined
the term software engineering, but also triggered the creation of new
development tools and methods which were centred on the design of
programming languages implementing new paradigms, such as mod-
ularity or object orientation. Other domains of activity were code
documentation, verifying and testing (see [8], [9], [14], [43], [47],
[49] and [46, p. 32]).

The decade of the 1960s also saw dramatic changes in the way
computers were programmed. In the beginning, there was an inti-
mate relationship between the programmer and his machine. Only

he would know all the intricacies of the device and the tricks of the
trade to get the most out of the intractable hardware. Later on, the
computer became a device locked-up in a separate room, taken care
of by specially trained operators. Programmers punched their code
into paper cards and delivered boxes with hundreds or even thou-
sands of them to the operators. They would feed the punch cards into
card readers and from there the data went into the memory of the
computer. This batch processing mode, as it was called, led to no-
table turn-around times. It often took several hours, sometimes even
days, until the result of the program execution was returned in the
form of a long sheet of printer paper. The early 1960s witnessed also
another invention: The time-sharing system. Several programs shared
the resources of the hardware, which gave the impression that pro-
grammers and users, who sat in front of the first interactive terminals,
had a machine for themselves. However, this new way of using com-
puters came at an expense. The complexity and size of the operating
systems increased dramatically (see [46, p. 32–34] and for a personal
recollection [19]).

One of the few attempts to structure the history of software engi-
neering is based on patterns and characterises the era around 1970 as
programming in-the-small. Simple specifications of input and out-
put data where sufficient for the degree of complexity commonly
deployed in those days. The emphasis of programmers and software
developers during the design process was on algorithms and their op-
timal representation of the problems to be solved. Usually, programs
would run once to generate the required results and then terminate.
New parameter sets or tasks demanded another execution of the soft-
ware. Early examples of more elaborate data structures and types
can be found, but especially in numerical calculations just matrices
of numbers were used and the persistent database for storage was a
deck of punch cards (see [19], [41] and [43]).

In the following decade, the specifications of systems grew in
complexity and the focus of software designers shifted from single
algorithms to system structure and management. Elaborate and dis-
ciplined long-time data management using databases superseded ad-
hoc solutions. Program systems became so rich in new features that
they would execute continually and not terminate after one solution
was obtained. Increasing levels of software complexity and interde-
pendency were fuelled by the advances in hardware technology and
computer systems architecture. Users with sophisticated numerical
applications were always open to enhanced systems and saw them
as indispensable tools to achieve their goals. Others regarded these
developments with suspicion and feared a deterioration of software
quality – covered up by the progress in speed and storage capacity
(see [19], [41], [43] and for a more sceptical view [46]).

This environment formed the context in which two software pack-
ages for the design of light-weight structures in architecture and civil
engineering were implemented and deployed for complex tasks such
as the design of the tent-shaped membrane roof of the Olympic Sta-
dium for the 1972 Olympic Games in Munich.

3 THE ADVENT OF THE SUPERCOMPUTER
Over centuries little progress had been made regarding the mechani-
sation of calculation. Early attempts by Blaise Pascal and others to
build a calculation apparatus had no lasting impact. The projects of
Charles Babbage to build a predecessor of the modern computer in
the first half of the 19th Century failed due to the lack of appropriate
technologies. The discovery of the nature of electricity and the tech-
nological advances in the first half of the 20th Century, which led
to advanced electronic components, such as vacuum tubes, transis-



tors and ultimately integrated circuits (ICs), enabled not only calcu-
lating machines, but programmable devices which would implement
the ideas of Turing, Church, v. Neumann, and others developed in the
1930s and 40s. Today, only a few people remember, that in the 1920s
and 30s, mostly female, operators of electro-mechanical calculators,
were named Computers (see [8], [14], [21], [47] and [49]).

The end of the Second World War and the rising tensions of
the Cold War saw a proliferation of companies keen to build com-
puters. Mostly from the United States (for example IBM), some
from the United Kingdom (Ferranti) or Germany (Zuse), and usu-
ally with a background in military research, these companies tried to
utilise many different architectures and technologies to create pro-
grammable computing devices. Not only digital computers, as envi-
sioned by John v. Neumann, Alan Turing, and others, but also analog
computers to solve systems of differential equations quite efficiently
(see [4], [33], [47] and [49]).

IBM, the largest and most successful of the new computer man-
ufacturers, ruled the world market of commercial mainframe com-
puters in the 1950s. Applications such as inventory management,
bookkeeping, and databases required complex instruction sets and
sophisticated storage facilities. Starting in 1957, Minneapolis-based
Control Data Corporation (CDC), conquered the market with a radi-
cally different philosophy. Their head designer Seymour Roger Cray,
the Father of Supercomputers, put all his design efforts into systems
for numerical and scientific applications. His intention was to build
the fastest computer in the world. By reducing the overhead in the
instruction set and streamlining the architecture, he managed to cre-
ate by 1964 the most powerful computer in the world: The Control
Data CDC 6600. This machine offered their users a fifty times in-
crease in speed compared to other computers available at that time.
It became an instant commercial success with over 100 installations
all over the world. Its two core memories had a capacity of 128 thou-
sand and 500 thousand words. Each word consisted of 60 bits and the
machine could execute nearly one million floating-point operations
per second (MFLOPS). The core of the system was able to communi-
cate over independent communication channels with plotters, print-
ers, high speed card readers and punchers, magnetic tape stations and
one of the first CRT terminals in the market. Remote users were able
to connect their infrastructure via telephone and dedicated data lines
to the system. In the 1960s, the CDC 6600 was the market leader of
high performance computer systems and the ideal tool for large-scale
numerical calculations like the ones required in architecture and civil
engineering (see [2], [29] and [32]).

4 TWO SOFTWARE PACKAGES FOR THE
STRUCTURAL ANALYSIS OF LIGHT-
WEIGHT STRUCTURES

In 1966, the Olympic Committee selected Munich to host the XX.
Olympics Summer Games in 1972. Although Germany would host
the Olympics Summer Games for the second time, after the 1936
Berlin Games, the organising committee had only six years to build
a completely new infrastructure from scratch in Munich. The still
existing facilities in Berlin could not be used, because Berlin, as a
result of the Second World War, was divided by the Iron Curtain and
Munich had to take its place.

Germany wanted to take the opportunity to present itself as a coun-
try with an open and liberal society. A country which had left the
dark ages of the Third Reich behind and formed an integral part of
the world community. Frei Otto, one of the most prominent German
architects of the 20th Century, had developed the innovative architec-

tural style that inspired the leading architect Günther Behnisch, who
had won the architectural competition proposing a transparent, open
and innovative tent-shaped membrane roof for the Olympic Stadium.
After winning the competition in October 1967, Behnisch’s design
was regarded as being very appealing, but ”. . . no one from the jury
actually believed that the proposed design of the light-weight struc-
ture, covering an area of 75.000 m2, could be realised.” (cited as in
[39, p. 99]). It was up to Frei Otto, who had been working on nat-
urally shaped structures in architecture for over a decade and was
willing to offer a helping hand, to convince Behnisch not to abandon
his design concept (see for these paragraphs [34], [35] and [42]).

The German architectural press was well aware of the fact, that it
would not be an easy endeavour to actually erect such a construction
and remarked:

The realisation and conviction are important, that not the
tent roof structure à la Montréal was awarded, as a fashion
of architecture, but it was the overall concept of the work of
Behnisch that convinced the jury. (. . . ) The built form is not the
primary, but the aim conception for a task, which exactly is not
derived from a formal aspect but from the nature of the prob-
lem. And for this the technological construction possibilities
ought to be found. (cited as in [39, p. 99])

It soon turned out, that Frei Otto’s standard approach of handling
non-linear design problems by drawing plans and building physical
models, were data on the shape of the structures could be collected by
measurements, would not be sufficient. The dimensions of the con-
struction and the forces acting on the pre-stressed cable nets forming
the membrane roof proved to be too large for a simple model build-
ing solution. The models could only be used to provide the raw input
data for computational models. The actual calculations to determine
the shape of the roof had to be done by computers. However, neither
the methods and algorithms for computing and optimising the roof’s
shape were available nor any software to do the actual calculations
had been developed until that day.

After Frei Otto had modelled the cable nets forming the roof, using
tulle and metal wires, the data from the fragile models were collected
by high resolution photogrammetric measurements. The results ob-
tained from the models (scaled 1:50) were of high quality with errors
well below the one millimetre level. However, even such minor er-
rors could lead to deviations in the actual construction in the range of
several centimetres. The cable nets, which carried the acrylic-glass
tiles that formed the roof, were held under stress to get their shape
and had to be constructed with the outmost precision (see for these
paragraphs [18], [19], [28] and [39]).

The design and computation of the roof had to be completed by
1970. This was the only thing known for sure when the first construc-
tion works started in the late 1960s. The pressure under which the
two groups, contracted by the Olympia Baugesellschaft and headed
by John H. Argyris and Klaus Linkwitz, had to fulfill their tasks was
tremendous. They were not only in charge of designing separate seg-
ments of the Olympic Stadium’s roof, but were also required to pro-
duce lists of materials, cable segments and the construction plans
to enable a construction process without interruptions. The overall
construction costs of the Olympic buildings would soon explode and
went from an estimated 17 million German Marks to 190 million
German Marks. However, such an important project was supported
by all relevant social and political groups in Germany and the major-
ity of the population was willing to carry this additional burden. (see
[19], [39] and [42]).

The two teams, who were commissioned to do the actual calcula-



tions for the design, were both experienced in solving complex prob-
lems and were equipped with one of the most advanced computers of
their time. The Control Data CDC 6600 was at the centre of John H.
Argyris’ Regionales Rechenzentrum (Regional Computing Centre)
at the University of Stuttgart. Argyris had recognised the potential of
high speed computers quite early in this career. In 1957, while still
with the Imerial College in London, he had already asked for a pow-
erful Ferranti Pegasus computer system. Although he usually knew
how to get his way, he had to wait until 1959, when he became direc-
tor of the Institute of Statics and Dynamics of Aerospace Structures
(ISD) at the then Technische Hochschule Stuttgart, to get access to
sufficient computing resources to pursue this ambitious plans of a
computer-based science (see [15, p. 331–332], [17], [23], [13] and
[36]).

Both groups had to use the same hardware to do the calculations.
However, both the methods and the software they applied were com-
pletely different. Argyris, who had co-invented the Finite Element
Method during the late 1940s and early 1950s, adapted his method
employing his ASKA software package, whereas Linkwitz and his
team started with a surface and curve fitting model and created the
Force Density Method as part of their project (see [19]).2

4.1 The ASKA software package

John H. Argyris was the co-inventor of the Finite Element Method
(FEM) and being a civil engineer by training, he knew about the im-
portance of numerical methods right from the beginning. One of the
main application areas of the Finite Element Method is structural en-
gineering (see [25]), others are electrical engineering, aerodynamics,
nuclear reactors, and many more. Structural analysis studies the de-
formation of arbitrarily shaped objects under stress. Generally, no an-
alytical solutions to these problems can be found and only numerical
approximations are possible. The Finite Element Method partitions
complex objects into an assembly of much simpler components. The
discrete elements usually take the form of a triangle or a tetrahedron.
The boundary lines of these elements meet in nodes and form a mesh
or grid covering the whole object. By solving a system of equations
describing the nodes and elements, the behaviour of the whole sys-
tem can be studied numerically using computer programs. There are
several ways to describe and model the behaviour of such an assem-
bly. Argyris’ contribution to the development of the Finite Element
Method was the creation of the matrix displacement method which
relies on systems of linear equations. Linear equations can be solved
efficiently on a digital computer using matrix operations. In this case,
there is a perfect match between the method and the machine to exe-
cute it (see [22]).

The development of the ASKA (Automatic System of Kinematic
Analysis) software package, implementing the matrix displacement
method using sparse matrices, started in the early 1960s at the in-
stitute of John H. Argyris at the University of Stuttgart. By the end
of the decade several versions of the program had been developed.
The latest edition was implemented using FORTRAN IV, a high-level
programming language, making the code machine-independent. The
system was designed right from the start to grow from humble be-
ginnings step by step in an open manner to a software package of

2 A more detailed account of the design of the membrane roof of the Munich
Olympic Stadium using supercomputers is presented in [12]. This study re-
ports in more detail about the intellectual background of the two competing
working groups headed by John H. Argyris and Klaus Linkwiktz and how
their training and experience influenced the way they solved the problem of
shape-finding of cable nets.

substantial size. To be able to cope with the complexity and the ex-
panding application fields, the system had a modular structure and
a library of over 30 different element types, which could be assem-
bled to form a fitting finite element model. New element types with
other properties could be added at any time without the need to re-
structure the whole system. This enabled investigations beyond lin-
ear static problems, including plasticity, large displacement effects,
and instability phenomena. By 1969, ASKA had reached the level of
a framework which allowed the integration of modules to study dy-
namical processes. The Dynamical Analyser (DYNAN) included dif-
ferent algorithms for free vibration analysis and transient response.
Arbitrary time-dependent loads could be applied to damped and un-
damped structures.

The intention of the programmers behind ASKA was to provide
an elegant and descriptive modelling language for the users to relieve
them of any tedious and unnecessary technical details. The process-
ing steps were structured into simple and transparent statements and
allowed for a problem-oriented approach. As a first step, the physi-
cal model (idealisation) of the structure had to be selected. Complex
structures like buildings or the fuselage of aircrafts would be divided
into substructures. At the second stage all necessary input data, such
as shape, element properties (e.g. size, kind of material, etc.), co-
ordinates of the nodes in the mesh, and any external loads had to be
provided to the software. Optionally, ASKA could check the input
data for consistency. It was designed to validate intermediate results
and to work with missing or inconsistent data. This provided a cer-
tain kind of user-friendliness, because the time to identify errors in
the model was reduced considerably.

The actual computation was done by a sequence of ASKA state-
ments (each representing a specific algorithm, most of them based on
linear algebra) which were applied to each substructure and finally to
the main structure. The process could be terminated at any time and
formed a kind of pipeline structure. To facilitate the interaction with
the users, a graphical representation of the results using a CRT dis-
play could be generated (see for these paragraphs [6]).

The design philosophy behind ASKA was quite advanced for the
1960s and characterised by the strict separation of functionalities into
different modules. Right from the beginning, input and output data
were well specified to minimise errors and to improve the usabil-
ity of the software. The emphasis was on sophisticated numerical
algorithms. The rich repository of typed basic elements to be used
for model building and the employment of sparse matrices to reduce
storage space were another advanced feature of the software pack-
age. The focus on modules that execute step-wise and then can be
terminated is another typical feature of software produced around
1970. However, one has to keep in mind, that these design decisions
had already been made in the early 1960s. Therefore, the ASKA soft-
ware package had been about five years or one generation ahead of
the general developments in software engineering and computer sci-
ence (see [6] and [43].

4.2 The evolution of ASKA
The ASKA software package was used in numerous large and com-
plex projects throughout the world, but remained deeply rooted in the
academic environment (see [40] and [48]). There were only a lim-
ited number of contacts with commercial software vendors or man-
ufacturers. Obviously, Argyris was afraid of losing control over the
further development of his brainchild. In the early 1980s, the situ-
ation started to change and by 1984 a group of former employees
of his institute formed a company called INTES based in Stuttgart.



INTES was intended to be the vehicle to commercialise and sell the
software in the market (see [16] and [31]). This proved to be a very
time-consuming and length process with a lot of frictions and obsta-
cles. The institute of Argyris had co-operated with a company called
IKOSS in Stuttgart which claimed some rights in the ASKA soft-
ware, as did some employees of his institute. It took some time to
find a sustainable way to form INTES (see [10]).

Today, ASKA, which sells under the brand name PERMAS, has
found its place in the market of professional Finite Element Method
software. After more than 25 years, the current version (PERMAS
V13) consists of more than 3 Million lines of code and is employed
in such diverse fields as, statics, dynamics, acoustics, heat transfer,
optimisation, electromagnetic fields, and many more (see [16]).

4.3 The software package for the Force Density
Method

The group of Klaus Linkwitz had to start more or less from scratch.
Two members of the group would play a decisive role in the devel-
opment of methods and software for the design of light-weight struc-
tures. The mathematician Hans-Jörg Schek would develop the Force
Density Method (FDM) and Lothar Gründig would adapt methods
known from geodesy to structure analysis and write the first pro-
grams to do the calculations. Compared to the Argyris group, they
had much less resources, much less experience using and writing
large software packages, and no software at hand which could be
easily modified or extended to solve their problems.

When Lothar Gründig started to code the software, his first task
was to find some tiny sample programs and a textbook to get an im-
pression of how the CDC 6600 and its FORTRAN compiler really
worked. There was only limited support from the operators and tech-
nical details, such as advanced methods of data handling, had to be
discovered by studying the manuals or talking to other users.

Both algorithms and software had to be developed in parallel un-
der an enormous time pressure. The core objective was to get results,
even when that happened in a quick and dirty manner. There was nei-
ther time or manpower to implement sophisticated data structures or
to formally specify input, intermediate or output data formats. The
database holding the measurement data collected from Frei Otto’s
physical models of the roof by photogrammetry where stored on
punch cards and only temporary data were written onto magnetic
tape. Using sparse matrices to do the actual computations was dic-
tated by the limited memory capacity of the CDC 6600 and the deci-
sion to plot the results was a requirement of the customers.

The approach of the Linkwitz group was focused on the implanta-
tion of an algorithm, not on the creation of a sophisticated software
package which could be marketed. The programs were run once, pro-
duced their results and then terminated. There was no really interac-
tive element in the software and the emerging standards of software
engineering around 1970 were only fulfilled on a rudimentary level.
It took many years until the software became so advanced that it
could be commercialised using the brand name Easy (see for these
paragraphs the recollections of Lothar Gründig [19], [20], [45] and
for an introduction to the Force Density Method [44]).

4.4 The evolution of Easy
After the calculations for the Olympic Stadium’s roof had been com-
pleted, both Hans-Jörg Schek and Lothar Gründig resumed working
on their academic careers and later became professors in Zürich and
Berlin, respectively. However, Lothar Gründig never lost interest in

the software he had created. Compared to the Finite Element Method
pursued by Argyris, the algorithms of Schek and Gründig were lim-
ited to the design of light-weight structures where architects had to
consider physical properties of their planned structures during the
design process. However, this focus on light-weight structures only,
created a software which gave the architects much more flexibility
and freedom to implement their creative ideas (see [19] and [45]).

Finally, in 1989 technet GmbH was founded. This company would
enhance the existing software and market it on a world-wide basis.
Today, Easy consists of five modules which cover all aspects of the
design of light-weight structures. Nearly four decades after the de-
sign of the Munich Olympic Stadium, Easy was employed in the
design of the Allianz Arena in 2006, the new football stadium in
Munich (see [45]).

5 TWO GROUPS WITH THE SAME TASK
The two groups working on the design of the Munich Olympic Sta-
dium’s roof were assigned separate parts of the structure. Working
in parallel would speed up the design process and provide a certain
degree of redundancy in case one of the approaches would fail.

Although both teams relied on the CDC 6600 as they basic in-
frastructure there was not much interaction. The results of the pre-
vious sections document how different their background, their ap-
proach and their daily work had been. The Argyris group was in
the quite convenient position to have a reliable software package
(ASKA) at hand. The necessary modifications of the available al-
gorithms and mathematical descriptions to cover the form-finding
aspects of the task were completed within six weeks (see [5] and
[39]). The Linkwitz group had to built their software more or less
from scratch. Because John H. Argyris was also head of the com-
puter centre where the CDC 6600 was based, his group regarded the
machine as their property and claimed priority over other users. The
Linkwitz group had do more than one night shift to get their fair share
of computing time on the machine. This attitude was perceived as ar-
rogant, especially when an assistant of John H. Argyris told members
of the Linkwitz group during a presentation: ”Das glaubt ja sowieso
keiner, dass Sie das können.”.3 Obviously, this remark was proved to
be wrong (see for these paragraphs [19]).

The obstacles, the two groups had to overcome, could not have
been more different. ASKA, with its detailed specifications of data
formats and internal validations, would guarantee results of the re-
quired quality level nearly automatically. Only local modifications
had to be made. The ad-hoc software of the Linkwitz group had
not been specified in a formal way, was rather unstable, and pro-
duced many faulty results. Entering data into the system required a
lot of manual work. A strict time-line and the limited resources of
the programmers involved, sometimes forced Klaus Linkwitz to find
unconventional solutions. Instead of investing more money and time
into the improvement and debugging of the software, erroneous re-
sults would be eliminated manually. If there was no piece of code
available to shuffle the matrix elements for an efficient calculation,
a member of the team had to do it. However, during the late 1960s
Germany was a prospering country and there was virtually no unem-
ployment. Even workers with rather limited skills were sought after.
When there were problems with the CDC 6600, he addressed the
Bundeswehr (German Army) and asked successfully for a group of
soldiers to manually check results, compile papers, and sort punch
cards, to catch up with the time-line (see [19], [27] and [39]).
3 ”Anyway, nobody is believing, that you can do this.” (translation by the

author, quoted from [19])



After the contracts for the construction of the Olympic Stadium’s
roof had been fulfilled, the Force Density Method developed by the
group of Klaus Linkwitz and the calculations of the Argyris group
formed the basis of the Sonderforschungsbereich ”Weitgespannte
Flächentragwerke” (SFB 64) (special research group no. 64 Light-
Weight Structures) which continued the research on the design of
light-weight structures in architecture. In the following years both
groups would co-operate more closely under the umbrella of this new
organisational unit (see [19] and for a general overview of the evolu-
tion of structural analysis [26]).

6 THE PARADIGM(S) OF SUPERCOMPUTING
Supercomputing or High Performance Computing (HPC) is a world
of its own. It is governed by specific system architectures, program-
ming paradigms, and hardware technologies. All propelled by enor-
mous amounts of money. Many regard the supercomputing commu-
nity a special breed of people living a life of their own.

High performance computing is also an ambitious field of sci-
ence and engineering. It promises new epistemic power to science
at the price of hefty investments, which become within a short time
of two or three years nearly obsolete. Belonging to the most power-
ful computers in the world is a quickly fading property wilting like a
blossom. New systems enter the market and occupy the top ranks of
supercomputer systems. Constantly pushing processing speed, stor-
age capacity and interconnection bandwidth to the technological and
physical limits provides not only an increase in quantity, but also
in quality. Combined with powerful visualisation techniques, super-
computers are a means of gaining new insights in science and a way
of solving sophisticated engineering problems.

It is easy to talk about supercomputers, but not so easy to define
what the essence of a supercomputer is. Obviously, it is a machine
which is very powerful in the sense that a gigantic number of opera-
tions can be executed in a very short time. One has to define a metrol-
ogy to measure this power. The most salient measure is the number of
operations executed per second. However, it is not clear of what na-
ture these operations are. Are they instructions of the kind copy one
value in a memory cell to another cell or should one talk about arith-
metic operations such as addition and multiplication? As supercom-
puters are number crunching machines, the universal performance
measure became the number of floating-point operations executed
per second (FLOPS). Being able to execute a lot of floating-point
operations very quickly is one characteristic of a supercomputer, but
thousands of personal computers or workstations working together
are also able to deliver such a level of performance. There is another
aspect to supercomputing which makes supercomputers outstanding.
It is their ability to deliver this performance in a sustainable manner
on one single application. High performance computing is more than
capacity computing, it is capability computing (see for these para-
graphs [32] and [41]).

But what is the paradigm of supercompting? Or should one talk
about many paradigms? Is there one paradigm which remained un-
changed right from the beginning in the mid-1960s?

Depending on the aspects under consideration, there a many
paradigms by which the history of supercomputers could be struc-
tured. The system architecture of such machines offers a fruitful
access to classification. Early systems like the CDC 6600 already
offered pipelined processing of data to increase processing speed.
Later on, this paradigm became known as vector processing and even
found its way into today’s microprocessors. From a programmer’s
and user’s point of view, the peculiarities of hardware design where

mostly hidden by compilers and operating systems which provided
the necessary vectorisation of the code (see [37, p. 94–95]). Another,
more recent, paradigm is distributed processing and the emergence of
high-speed networks, where large numbers of interconnected proces-
sors execute programs in parallel (see [11]). Such paradigms tend to
shape the view of software developers and users regarding the struc-
ture of their problems. They are lured into adapting their interaction
with the systems accordingly. In the world of non-supercomputers,
system designers try to conceal the internal structure of comput-
ers and create programmer and user interfaces with a non-technical
touch and feel. In the field of supercomputing, programmers and
users are usually much closer to the system architecture. The only
exception might be the visualisation of the results itself, where super-
computers and their specific architectures are hidden behind colour-
ful images and animations.

6.1 The persistent paradigm of supercomputing

The paradigm of users adapting the structure of their problems to the
specific architecture of their computers is the one paradigm which
did not change since the beginning of supercomputing in the 1960s.
In those days many regarded computers as over-sized calculators.
Only a few recognised them as heralds of a new time, in which new
insight into scientific and engineering problems could be gained by
numerical calculations.

John H. Argyris provided one of the few personal reflections in
this era and remarked:

Our intellectual development and, if we may say so, also
adventures have shown, however, that one’s philosophy of ap-
proach to the computer may be more important than particu-
lar techniques, some approaches being more fruitful in terms
of results than others. [. . . ] But in appreciating the full poten-
tial and power of the computer and striving towards its most
effective utilization, we have to learn to use it not as a large as-
sembly of desk machines, but as a novel device which forces us
to remodel our intellectual processes. In this continuous fight
against established ideas we have to be driven by an instinctive
understanding not to impose our past analytical models on the
computer and to worry if they do not suit it, but to rethink our
physical environment in newly invented models which are best
suited to the world of computers. ([7, p. 395])

Important concepts of analytical mathematical physics, such as
smoothness, continuity and singularities were put aside in favour of
more a pragmatic and discrete view on physical problems. And in
Argyris’ ”opinion and practice, the computer, when applied with in-
telligence and feeling, dictates the whole morphology of a theory
and the necessary associated computer software.” ([7, p. 395]) In his
work, the theories and models became discrete and digital. The world
itself was cut into little junks of bits and bytes, ready to be fed into a
computer. ”In short, we strive to mould the computer and the theory
into a unified system for solving problems of any complexity.” ([7, p.
396]) High-speed computers were regarded as a tools to solve prob-
lems of any degree of complexity and the price one had to pay, was
to adapt to the structure and architecture of digital systems.

However, man was not made to deal with long columns of num-
bers that easily. This problem could be solved by using interactive
graphical displays, which allowed the users to visualise results and
to study them in an explorative way, more fit to the workings of the
human intellect (see for these paragraphs [7]).



Software packages, having been in existence in numerous versions
for more than forty years, designed with such principles in mind, do
not follow the current trends of new programming languages, virtual-
isation and cloud computing, that try to abstract from the underlying
system architecture. Such an approach would be too costly in terms
of performance and would be opposite to the idea of pushing the
limits, that is so deeply engraved into the minds of supercomputer
designers and users (see [30]).

7 CONCLUSION

This historical case study on the implementation and deployment of
two software packages for the design of the light-weight membrane
roof of the 1972 Munich Olympic Stadium provided detailed insight
into the way software for complex and ambitious projects has been
written and used around 1970. It was shown that major principles of
software engineering had already appeared independently in the field
of structural analysis and engineering in the early 1960s.

Our case study could take advantage of a rare opportunity in his-
tory. An event could be examined were two, more or less competing,
groups with different philosophies worked in the same environment,
at the same place, on the same project, and using the same computer
infrastructure. Usually, historical developments have to be studied in
differing settings, making it difficult to compare the results. This case
study could be conducted in a way usually only common to scientific
experiments.

It was also demonstrated, that the paradigm of closely adapting
the structure of the problems under study and the software represent-
ing them to the system architecture of computers forms an invariant
element of the philosophy of supercomputing since more than forty
years. This rather weak interaction with the developments in general
computing and computer science makes high performance comput-
ing a special case worth to be studied in more detail.
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On the Cognitive Science of Computer Programming
in Service of Two Historic Challenges

Selmer Bringsjord1 and Jinrong Li2 and Naveen Sundar G.3 and Konstantine Arkoudas4

Abstract. We describe two historic and hard programming chal-
lenges: the educational challenge of getting humans to effectively
program from scratch, and essentially the same challenge applied to
computing machines. We review work done in both these domains,
and then present our views on what could constitute acceptable so-
lutions for these two related problems. Our view is that for the edu-
cational challenge, formal training in logic is not only sufficient but
also necessary. The state of the art in solving the second challenge
also indicates that any methodology which shies away from building
machines that can robustly handle general-purpose formal reasoning
has bleak chances for success. A pilot study supporting our stance is
presented. We conclude by describing our plans for a second larger
experiment that we predict will strengthen our stance.

1 INTRODUCTION
Despite decades of study and development of systems for teaching
computer programming to humans (e.g., Logo), and of programs that
automatically write programs (in the field of automatic program-
ming, hereafter just AP), the process of designing and generating
precise instructions “from scratch” for computers remains both ex-
ceedingly difficult for most humans (even for those who are exposed
to these systems under seemingly ideal conditions), and for all com-
puting machines. We have inaugurated a research project designed to
change this situation dramatically for the better.

What do we mean by ‘from scratch’? One can sensibly distinguish
two types of programming. The first we label ‘programming1.’ Here
one receives an explicit algorithm or pseudo-code as input, and pro-
duces code that when executed computes the algorithm. For example,
given a detailed description of the merge-sort algorithm, one pro-
ceeds to code the algorithm in, say, Java. To do this, one basically
only needs to learn how to map from pseudo-code to the syntax and
basic control structures of Java; very little problem-solving is needed,
and one doesn’t need to have even an intuition as to whether the re-
sultant code is provably correct. The other, deeper kind of program-
ming is programming2; this is what we allude to by ‘from scratch.’
Here one receives only an abstract, non-executable description of a
function f in for instance the kind of hybrid natural-language/formal-
language content traditionally used in a mathematics textbook or ar-
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ticle, and then must create solutions that include algorithms, and then
proceed to code these solutions in some programming language; that
is, produce a working computer program that computes the function.
When a human truly programs2, she is at least in position to gen-
uinely grasp when and why some computer program is correct.

With this terminology in hand, the chief challenges our research
project is intended to meet can be stated.

hypotheses can be stated. We hypothesize but (ii) that those hu-
mans who are crack programmers2 hold the secrets to writing pro-
grams that can program2. Our research project is designed to test (i)
and leverage (ii) in order to advance the field of AP. But our project
is also intended to meet two challenges that stem from hypotheses (i)
and (ii).

2 THE TWO CHALLENGES WE SEEK TO
MEET

Our project can be viewed as an attempt to meet two challenges, to
wit:

1. The Educational Challenge (E): How can we best bring it about
that humans (particularly young ones) learn how to effectively
program2, where the given input function f is non-trivial and per-
haps even quite complicated? This is a severe challenge, because
apparently even US college students with high mathematical ap-
titude (as measured by SAT scores) in technical majors (includ-
ing computer science itself!) who have been exposed to Logo and
other such systems before college are for the most part nonetheless
unable to program2.

2. The Technological Challenge (T): How can we bring it about that
computing machines (which can of course without loss of gen-
erality themselves be viewed as programs) program2, where the
input functions are, again, non-trivial and perhaps complicated?
And how can we build computing machines that not only generate
computer programs that compute functions given as input, but also
establish that the programs they produce are correct? That is, how
can we create self-verifying automatic programming programs?
The challenge here is like its predecessor quite severe, given the
sad state of AP.

At this point we provide further context on T, by giving an
overview of AP.

3 BRIEF OVERVIEW OF AUTOMATIC
PROGRAMMING

Put simply, AP is the field devoted to writing computer programs
smart enough to write significant computer programs, from — as



we’ve of course said — scratch. By and large, AP has not exactly
made impressive strides over the last three decades.5

The aims of AP have fluctuated considerably over the decades,
as has been pointed out by Rich [14] and others. In the 1950s, the
mechanical compilation of Fortran programs into machine code was
viewed as “automatic programming.” In the 1960s, at the dawn of
AI, and in keeping with the rather ambitious dreams of this new and
exciting field, a much more lofty goal was set for the field — the
black-box version of AP, whereby only a non-executable description
of the desired relationship between input and output is provided to
the synthesis software, and the latter then emits an executable com-
puter program that realizes the given specification.

There are several degrees of freedom in the above scheme. First,
there are several choices concerning the medium in which we express
our description; for example:

1. Natural language: Ideally, we would be able to simply tell the
machine in a natural language such as English what we want the
program to do. In practice, this is not feasible currently. One could
of course restrict the input language to, say, a controlled subset of
English, but such subsets are in fact formally defined.

2. Formal specification: The description could be expressed in a
high-level declarative formal system, such as first-order logic. It
would be assumed that the formal specification is sound and com-
plete with respect to our informal requirements.

3. Input-output examples: The “description” could be illustrated by
way of input/output pairs. This would be necessarily incomplete,
as there will always be infinitely many programs that cover any
presented finite set of examples.

4. Hybrid representations: Here there is a mix of the above, and also
a reliance on diagrammatic or visual representations.

Most of the work on AP so far has adopted one of the second and
third of these approaches. Typically, inductive techniques synthesize
programs from input-output examples, whereas deductive techniques
synthesize programs from formal specifications.

The following represent three of the most prominent threads of
research in the inductive camp of AP:

1. Recurrence Detection. The seminal work in this area was carried
out by Summers [18]. It is one of the most psychologically plau-
sible approaches in the field. Summer’s ideas have been extended,
most notably in the 1980s by Kodratoff [6] and Wysotzki [19],
who augmented the basic scheme outlined above. Similar tech-
niques have been used for “programming-by-demonstration” sys-
tems such as Tinker [9]. Kitzelmann [5] and others are continuing
this line of work, but results so far have been limited.

2. Genetic Programming. Genetic programming (GP) [7] was dis-
covered in the 1980s (although the general idea of genetic algo-
rithms goes back to the 1950s). The main idea of GP is the fol-
lowing:

• Start with a population (say 104) of random computer pro-
grams. Typically programs are purely functional, often ex-
pressed in pure LISP, and represented as ASTs (abstract syntax
trees).

• Assign a fitness value to each program.

• Create a new population by performing “genetic operations” on
selected programs, most notably crossover and mutation.

5 The ‘from scratch’ phrase is the catch. Great progress has been made in
the semi-automatic realm, where code is e.g. generated from libraries of
pre-existing code, and from pre-engineered algorithms for code generation
from predictable triggers.

This loop is continued until some program in the current popula-
tion achieves a satisfactory fitness, or until a maximum number
of iterations has been made. An important point is that the pro-
grams to be operated on are selected with probability proportional
to their fitness.
The most common genetic operations are the following: Usual op-
erations:

• Mutation (on one program only): Randomly alter part of a pro-
gram’s structure.

• Crossover (on two programs): Randomly shuffle two parts of
the two programs.

• Reproduction (on one program): Simply carry over a program
unchanged into the new population.

Crossover is the most important of these three operations, and per-
formed most frequently (with the greatest probability).
GP is generally well-suited for optimization and control problems,
and for games. Unfortunately, it’s too computationally intensive.
Evaluating the fitness of programs entails evaluating the programs
themselves, which can be very time-consuming. ADATE [11], for
instance, one of the most prominent AP systems based based on
genetic programming, takes 6.5 days to evolve a program for list
intersection. Like the other approaches, genetic AP techniques
have not scaled to realistic programs. In addition, and in contrast to
inductive logic programming, genetic programming is very weak
on understanding and explanation. Typically the generated pro-
grams are horribly convoluted spaghetti code. (Although one can
mitigate that to a certain extent via simplification, and by making
program structure and succinctness part of the fitness function.)
As a result, genetic programming is the least cognitively plausible
of all well-known methodologies for AP.

3. Inductive Logic Programming. Inductive logic programming
(ILP) [10] synthesizes logic (rather than functional) programs.
The input to the synthesis process consists of:

(a) A background theory B.

(b) A set of positive examples E+ (almost always atoms).

(c) A set of negative examples.

The following requirements are imposed:6

(a) 8 e� 2 E� . B 6|= e�

(b) ¬ 8 e+
2 E+ . B |= e+

The output is a hypothesis h such that:

(a) 8 e+
2 E+ . B ^ h |= e+

(b) 8 e� 2 E� . B ^ h 6|= e�

Of course the conjunction of all the positive examples is a trivial
solution, but what we are really after is predictive power — the
generated hypothesis should do well on unseen data.
The basic algorithm of ILP is to start with a very specific hypoth-
esis and keep generalizing; or, alternatively, to start with a very
general hypothesis and keep specializing. Various combinations
are also possible.
Many successful ILP systems view induction as the inverse of
deduction, and form hypotheses by inverting deductive inference
rules. A typical inference rule is absorption:

6 We write � |= p to indicate that the set of formulas � logically implies the
formula p.



A) q A, B) p [Absorption]
A) q B, q) p

The conclusion here logically entails the premises.
While ILP has been successful in data mining, in automatic pro-
gramming the results have been underwhelming. There have been
no remarkable programs generated beyond the usual toy examples
(list reversal, etc.). In addition, the generated programs are often
quite inefficient. In fact, the method itself is inefficient for recur-
sive programs, since testing examples requires running arbitrary
code.

In deductive program synthesis, the input is a formal specification
of the desired relationship between the input and output, expressed
either in first- or higher-order logic, or else in a very high-level spec-
ification language; and the output is a program, typically in a func-
tional language, such as the purely functional subset of Lisp, that is
guaranteed to terminate and to satisfy the specified relationship. The
guarantees are in the form of formal proofs.

Much of the work in this field has been carried out in the con-
text of constructive logic, whereby the program is extracted from a
constructive proof asserting the existence of a suitable output (i.e.,
an output that meets the specification). Nevertheless, it is not strictly
necessary to use constructive logic per se, and indeed some of the
most seminal work in this vein took place in the backdrop of classi-
cal first-order logic. At any rate, the main idea in either case is the
same: Given the formal specification and a background theory that
axiomatizes the relevant domain (e.g., a theory of lists or trees), we
attempt to construct a proof that the desired function satisfies the
given specification.

More precisely, let S denote the given specification:

8 x : I, y : O . S(x, y) (1)

where x and y range over the input and output domains, respectively,
I and O. In the interest of flexibility, we do not require the specifi-
cation to be functional. That is, for any given input x, there may be
zero, one, or multiple outputs y that bear the desired relationship to
x. Often the specification S(x, y) is of the form

Pre(x))Post(x, y), (2)

asserting that if the input x satisfies a certain precondition, then the
output y is related to x in accordance with some desired postcondi-
tion.

The goal is to synthesize a computable definition of a function

f : I!O

for which the following holds:

8 x : I . S(x, f(x)). (3)

In particular, when the specification S is of the form (2), the desired
condition can be equivalently rewritten as follows:

8 x : I . Pre(x))Post(x, f(x)). (4)

There are several drawbacks to the deductive approach:

• The approach requires the user to submit a formal specification of
the relationship between the inputs and desired outputs. But writ-
ing such specifications can often be just as challenging as writing
a program to compute the desired function.

• The approach depends crucially on the state of the art in theorem
proving. Unfortunately, theorem proving is an extremely challeng-
ing problem, and while there has been some progress in the field,
current capabilities fall well short of what would be required for
automated deductive synthesis of realistic programs.

• Typically, the generated programs are purely functional and often
quite inefficient. In principle, more efficient versions could then be
successively obtained by applying suitable program transforma-
tions, but in practice this prospect also runs up against the limited
capabilities of theorem-proving systems.

Nevertheless, the deductive approach could prove feasible in the
setting of interactive theorem proving, provided that the amount of
required human guidance could be kept at a minimum. Moreover,
a deductive synthesis module might be a useful (perhaps indispens-
able) component of a larger synthesis system that combines inductive
and deductive techniques. We suspect that such a combination would
be reflective of how expert human programmers generate programs
in non-trivial cases, but additional empirical work on our part is nec-
essary to test our suspicion, let alone concretize it in a working AP
system. At any rate, in order for challenge T to be met, some strong
contribution from deduction must be made, since the only way, by
definition, to prove that some AP-generated code does in fact com-
pute the function it’s intended to is to use formal logic — and ulti-
mately to use proof-checking technology (discussed in [1]).

3.1 TWO APPROACHES EDUCATIONAL
CHALLENGE E

There have of course been many attempts to meet both challenges.
In our planned presentation and demonstration at HAPOP 2012, we
discuss two fundamentally different approaches to the challenge E:

1. Approach C (in honor of constructivism): This is not unfairly
called “learning by doing.” This approach holds that humans gen-
erate knowledge and meaning from an interaction between their
concrete attempts to build, and reaction to the results of these
attempts. So, children on this approach supposedly best learn to
program2 by diving into examples, without first receiving training
about the formal essence of programs and their formal idealiza-
tions (e.g., Turing machines), and without being given any back-
ground in naı̈ve set theory to aid in achieving a deep understanding
of programs. Often approach C is accompanied by a concerted ef-
fort to engage the student with entertaining window dressing (e.g.,
turtles and other cute animals) that has rather little to do with the
formal essence of a program or the function(s) that it computes.

2. Approach R (in honor of abstract reasoning): Learning by de-
liberative reasoning, applied to progressively more difficult prob-
lems, until the learner reaches at least Stage IV in Piaget’s [4] con-
tinuum for cognitive development. At IV and beyond the learner
can reason at the level of full first-order logic, and can generate
and assess hypotheses expressed in FOL. R is based on the idea
that the best way to learn to program2 is to gradually come to un-
derstand essential theoretical concepts, and on the idea that under
the right conditions some humans can indeed reach Stage IV and
beyond [15, 2]. R also suggests that programming languages and
environments should themselves be reflective of formal logic (e.g.,
see [3]).



4 APPROACHES TO CHALLENGE T

It’s beyond the scope of this extended abstract to any more than sum-
marize the approaches that have been taken to T (as was done in §3).
Bringsjord (along with Konstantine Arkoudas) carried out a com-
prehensive review of the status of AP for the US National Science
Foundation. The upshot, which won’t come as a surprise to anyone,
and which is conveyed by §3 herein, is that essentially no progress
has been made on automatic programming, despite the fact that it
was one of the original dreams of AI. Note again that since we are
interested in automatic programming where the programs produced
by programs are known to be correct (in the sense that they provably
compute the input functions), evolutionary techniques that generate
programs which for all we know may or may not compute the input
functions are by definition inadequate.

4.1 OUR TWO CLAIMS

Now, given the foregoing, we make a pair of clams that we hope to
articulate and defend at HAPOP 2012:

1. Approach C has not, and will not, succeed in allowing us to solve
E. Approach R, on the other hand, will allow us to meet E.

There has been much work done under C. The “grandfather”
exemplar of this approach is Logo, created by Bobrow, Feuzeih,
and Papert in 1967; Logo has inspired and influenced many
other systems: Etoys, Scratch, NetLogo, KTurtle, REBOL, etc.
These systems generally provide a graphical environment for
children to learn by discovery themselves. Although there is
some evidence that learning Logo improves problem-solving
and thinking skills [17, 12], the vast majority of researchers
outside the Logo/constructivist fold find little to be encouraged
by. For example, no greater planning skills have been found for
students who had a year of Logo programming, compared with
those who did not (e.,g., see [8, 13]).
In our Experiment 1, The results, for a group of 120 subjects
of the afore described type,7 included that less than 3% came
close to solving one of the two programming problems they
received, and less than 1% provided bona fide solutions to both
programming problems.

2. Engineering approaches to meeting the challenge T that are anal-
ogous to C (e.g., evolutionary machine-learning approaches) will
not allow us to solve T . On the other hand, if we can understand
the nature of the deep reasoning and creativity in exceptional indi-
viduals who are adept at programming2, we can profitably apply
this understanding to the engineering of programs that meet chal-
lenge T. We concede that the graph shown in Figure 1 is here
painfully relevant.

In a second phase of our pilot study we considered only those
students with training in formal logic. Out of a group of 30
subjects who had taken introductory mathematical logic, about
20% solved both questions correctly.

7 US college students with high mathematical aptitude (as measured by SAT
scores) in technical majors (including computer science itself!) who have
been exposed to Logo and other such systems before college.
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Figure 1. 3D View of Degree of Human Insight, Difficulty of Underlying
Function to be Computed by Discovered Program, and Ease of Extracting
the Nature of Human Insight. Problems from both “Easy” (S1) and “Diffi-
cult” (S2) spaces are indicated. In the case of S1, not much human insight is
needed, because the underlying function to be coded is simple; and hence it’s
relatively easy as well to extract an account of how the human proceeded to
success. By contrast, S2 is difficult on all three dimensions.

5 EXPERIMENT 1 SUMMARY
Subjects were asked to answer a set of questions related to their
educational backgrounds with respect to math, logic, and com-
puter programming. Then they attempted to solve two programming
problems, using a programming language of their choice, or using
pseudo-code. The sections were conducted both online and in the
classroom.

5.1 DESCRIPTION OF STIMULI IN
EXPERIMENT 1

Both programming problems involved working with a very simple
language, L, a fragment of English. The words used in L are:

{Bill, Jane, likes, chases, makes, a, the, man,

woman, cat, happy, thin, quickly}

Bill, Jane, man, woman, and cat, are nouns; happy and thin are
adjectives; likes, chases, and makes are verbs; a and the are deter-
miners; and quickly is an adverb.

The following grammar defines the sentences of L.

S ::= NOUN VERB NOUN R1
| DET NOUN VERB NOUN R2
| DET ADJ⇤ NOUN VERB DET ADJ⇤ NOUN R3
| DET ADJ⇤ NOUN ADV VERB DET ADJ⇤ NOUN R4
| DET ADJ⇤ NOUN VERB DET ADJ* NOUN ADV R5

Where NOUN stands for any noun, VERB stands for any verb, DET
stands for any determiner, ADV stands for any adverb, ADJ stands for
any adjective, ADJ⇤ stands for zero, one, or more adjectives, and S
stands for a well-formed sentence of L.

For instance, the sequence hthe, thin, cat, makes, a, Billi is a sen-
tence of L, because cat and Bill are nouns, likes is a verb, the and
a are determiners, and thin is an adjective, so the sequence has the
form DET ADV⇤ NOUN VERB DET ADJ⇤ NOUN, which, by rule



R3, is a sentence of L. (Notice that the first ADJ⇤ is matched with
the one adjective thin, while the second ADJ⇤ is matched with the
lack of adjectives between a and Bill.)

In each of the two problems subjects were asked to write a pro-
gram by using a language such as: BASIC, C, C++, Java, Lisp, Pas-
cal of their choice; or pseudo-code. The two problems were quite
straightforward:

5.1.1 Problem 1

In Problem 1 in Experiment 1, subjects were asked to write a program
P that takes as input a (finite) sequence of words used in L and out-
puts yes if the sequence is a sentence of L, and outputs no otherwise.
For example, given the sequence hBill, likes, Janei, P should output
yes because the sequence is a sentence, according to R1. When given
hBill, Jane, likesi, P should output no, because this sequence is not
a sentence of L.

5.1.2 Problem 2

In Problem 2 of Experiment 1, subjects were asked to Write a pro-
gram P that takes as input a (finite) sequence of words used in L

and outputs yes if the sequences is a palindrome sentence of L, and
outputs no otherwise. A palindrome sentence is a sentence which
reads the same in both directions. For example, given the sequence
hBill, likes, Billi, P should output yes, since the sequence is a palin-
drome sentence. When given hthe, cat, likes, Janei, P should output
no, since the sequence, although a sentence, is not a palindrome sen-
tence.

5.2 RESULTS
We give a brief summary of results directly relevant to the claims we
made above relative to the two challenges E and T.

There were two groups of subjects: Group 1: a random group of
students who sign up for the test. Total 206 Subjects (183 online, 23
on paper). Among them 85.7% never took a logic class, 35% had
programming language classes. A slim 2.3% succeeded.

Group 2: 50 students who were in their second semester of a for-
mal logic lass; 20% (10 out of 50) succeeded in solving of both prob-
lems (see Figure 2).

2.43% 
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0%
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20%

25%
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Figure 2. Experiment 1 Result. Group I: Naı̈ve Group; Group II: Logic-
Class Group

We concede that Experiment 1 is fundamentally only a pilot study.
Our next experiment, Experiment 2, presents subjects with more

complicated functions to be computed by the programs these sub-
jects create. In addition, we will be looking systematically at how
those select few who succeed managed to do so, so that we can per-
haps gain further insight into whether we are right that abstract rea-
soning ability is key, and whether the “secrets” to success suggest
better techniques in the attack on T. We give now a brief account of
Experiment 2.

6 PLAN FOR A SECOND EXPERIMENT
Since the success rate for the general group in Experiment 1 was
stunningly low, we are designing a second experiment which we be-
lieve is easier than the first experiment, but still hard enough to un-
derstand the impact of formal logic training in simple programming.

In the second experiment, we first provide text familiarizing sub-
jects to three logic gates: {and, or, not}, Figures 3, 4 and 5, and a
programmable logic array.
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Figure 6. A Simple Logic Circuit 

Output O (A1,A2,…,An) Inputs(A1,A2,…,An) Programmable 
Logic Array (PLA) 

Figure 7. A PLA Block

A programmable logic array (PLA) is a an array of {and, or, not}
logic gates physically arranged in the disjunctive normal form which



can be customized to compute functions by modifying connections to
produce new outputs. The experiment consists of three problems. In
the first problem, a logic circuit C is given, for instance Figure 6, and
the objective is to write a program m which computes the function
fC that the circuit computes C.

In the second problem, a PLA P (O1, . . . , On) such as the one in
Figure 8 is given, and the goal is to write programs m1, . . . , mn for
the all functions O1, . . . , On output by the PLA.
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Figure 8. Schematic Diagram of a PLA Block’s Internals

In the third problem, input-output descriptions of functions
O1, . . . , On are given in the language of the propositional calculus
(see example below) in disjunctive normal form, and the goal is to
provide a PLA P (O1, . . . , On) that can compute the functions.

O1 = A _ (¬B ^ C)

O2 = (A ^ ¬C) _ (A ^B)

O3 = (¬B ^ ¬C) _ (A ^B)

O4 = (¬B ^ ¬C) _A

Despite having visual elements to them, we note that these prob-
lems fall into programming space S1, while those in the first experi-
ment fall into programming S2. 8

7 CONCLUSION

Of course, we can only offer a temporary conclusion, since our re-
search project is still embryonic. Overall, we conclude, humbly, that
we seem to be making some small progress toward meeting chal-
lenges E and T, and vindicating our core, driving claims. We are
far from being able to offer students an efficacious learn-to-program
environment rooted in a formal approach; and we are far from be-
ing able to contribute to AP on the strength of dissecting human
programming2 ingenuity. But we press on.

8 A semi-formal argument for this classification goes as follows: grammar
descriptions of the sort given in the first experiment, e.g. context free gram-
mars, can represent a wider class of functions than what is possible with a
PLA. This is because a PLA can be represented by a finite state automaton,
and the set of languages recognized by the class of finite state automatons
is a subset of the set of languages recognizd by the class of all context free
grammars.

There is in particular much room for experiments that present sub-
jects with extremely difficult programming problems, and it’s per-
haps in analyzing the cognition constitutive of solving such problems
that real fruit for the advance of AP will be found. These problems
would presumably be those which are such that, as far as anyone can
tell, infinitary concepts and constructions are necessary as the hu-
man moves toward producing a program. We do have such examples
in formal logic. For example, there currently is no finitary way of
proving that certain theorems (e.g., Goodstein’s Theorem) which are
independent of Peano Arithmetic (therefore making PA incomplete)
are nonetheless true and provable. It would be very interesting, and
perhaps quite revealing, to pose programming problems that require
the kind of computational ingenuity required to see that Goodstein’s
Theorem holds.9
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The Role of Types for Programmers
Timothy Colburn1 and Gary Shute2

Abstract. The concept of type in computer science is intimately
bound with the effort to create safe and expressive languages with
which to write programs. We consider types from a programmer’s
point of view, focusing on how they aid a programmer’s mental
model of computation in a chosen domain. We also discuss how
type systems offered by class-based object-oriented programming
languages account for much of modern software success by facili-
tating code reuse.

1 Introduction and Background

Those of us who have been programming or teaching programming
for over thirty years have seen the introduction of many program-
ming languages and several programming paradigms. From a pro-
grammer’s point of view, a language is useful if it is both expressive
and helps avoid programming errors. The concept of a programming
language type is indispensable on both of these counts.

Many programming errors arise from confusion about types. Com-
puter scientists working in the area of type theory attempt to create
formal language semantics that can be used by program compilers
to automate the process of catching type errors before a program is
run. (See [10] and [2] for seminal approaches to modern type the-
ory.) Programmers benefit from this work when, for example, code
is written that attempts to perform an arithmetic operation on non-
numeric data. Without compile-time type checking, such code would
likely produce a run-time error that would be difficult to interpret
and fix. With such checking, a message can be generated that helps
in identifying and quickly fixing the problem.

While type checking to catch errors is essential for a programmer,
language types are just as important for the expressiveness they offer
programmers in thinking about and coding the computational inter-
actions they wish to bring about. Here again, type theory provides the
foundation for languages to provide this expressiveness. As Cardelli
and Wegner put it, “The objective of a [formal] language for talking
about types is to allow the programmer to name those types that cor-
respond to interesting kinds of behavior” [2, p. 490]. Our purpose in
this paper is not to describe the formal languages that provide such
behavior (typed lambda calculus with universal quantification, for
example). Instead, we take a philosophical look at how such work
has resulted in programming environments that allow programmers
to think directly about the real-world entities they wish to model in
their programs, and to create software that adapts and grows like the
real-world environments in which they are situated. Since this paper
seeks to contribute to a growing body of work in the philosophy of
computer science, we offer some background on our conception of
the nature of computer science in general and software in particular.

1 University of Minnesota, Duluth, email: tcolburn@d.umn.edu
2 University of Minnesota, Duluth, email: gshute@d.umn.edu

1.1 Computer Science as an Engineering Science
Our approach to the philosophy of computer science begins with the
recognition that computer science is a science that creates its own
subject matter, in the form of various abstractions of computational
processes, data, and machine state. In this it differs from the natural
sciences, which take natural substances and processes as their subject
matter, in order to explain and predict natural phenomena.

It is plausible to argue that mathematics also creates its own sub-
ject matter, and also in the form of abstractions, but mathematics and
computer science differ in the purpose served by their abstractions.
While mathematics uses abstraction to create inference structures,
computer science uses abstraction to create interaction patterns [4],
where participants in such interactions are themselves abstract com-
putational objects created to specify, control, and reason about under-
lying electronic processes with which modern human beings directly
and ubiquitously interact.

Because computer science creates its own subject matter, it can be
thought of as an engineering science, sharing with science in general
the desire to understand the causal factors influencing phenomena of
interest, but sharing with other engineering disciplines the goal of
applying the causal knowledge gained to the creation of a desired
product, most often in the form of software. But computer science
stands apart from other engineering disciplines in that its subject mat-
ter consists of abstractions — algorithms, specifications, programs,
data structures, etc. — which are not subject to the same physical
constraints, such as gravity, temperature, the chemical properties of
materials, etc., that are brought to bear on the products of other engi-
neering disciplines.

Engineers of physical products and processes must be intimately
familiar with the laws of nature and to use them to their advantage.
So, for example, it is essential that a bridge engineer understand the
effects of gravity on various materials and structural designs. Cer-
tainly, there are times when a computer scientist is similarly con-
strained by laws of nature, as when writing an operating system that
must make judicious use of the limited battery lives of today’s cell
phones. But in the world of abstractions where a programmer nor-
mally resides, there are no laws of nature to discover and exploit.
Working in such a world imposes different constraints, namely, the
constraints that programmers must impose on their computational
objects in order to create and control the computational processes
that are the products of their work [5].

1.2 The Objects of Computer Science
In consistently referring to the “abstract computational objects” that
are the subject of computer science, what do we mean? There are two
senses of such a concept. First, it can refer broadly to any of the for-
mal structures that have a role in the overall creation of software. The
ontology of computational objects in this sense has been fairly well



established and unchanged since the early days of computer science
and includes: algorithms, data structures, efficiency proofs, specifi-
cations, programs, correctness proofs, etc.

Second, in the sense in which we are interested here, an “abstract
computational object” can refer specifically to the actual objects that
take part in the computational processes that are the goal of soft-
ware development projects to create. In this sense, one may (perhaps
overly loosely) regard computational objects as the abstract coun-
terparts of the electronic objects that actually carry out a compu-
tational process on a physical machine. The precise nature of this
abstract/concrete relationship is open to debate, but it mirrors an es-
sential duality of software, which has both a medium of description in
the abstract world of algorithms and textual programs, and a medium
of execution in the concrete world of silicon structures and their phys-
ical states [3].

1.3 How Software’s Execution and Description
Have Changed

Software’s medium of execution, or the actual machines on which
it runs, has of course changed dramatically over the decades, wit-
nessed by the steady march of “generations” of new processors in
tandem with the celebrated “Moore’s Law”. But the basic ontology
underlying software’s medium of execution is essentially, and per-
haps remarkably, unchanged from the early days.

From the development of the stored-program computer in the mid-
dle of the last century until today, a computer’s high-level architec-
ture has consisted of one or more central processors, peripheral pro-
cessors, primary memory, and secondary memory. And although pro-
cessor and memory devices have undergone dizzying change during
that time, such change is due more to miniaturization and paralleliza-
tion than to fundamental changes in architecture or ontology. Modern
multi-core processors, for example, implement the same basic logic
gates as their predecessors from generations back.

In contrast, software’s medium of description, or the languages
devised for programmers to specify computational processes, has
changed markedly with respect to the basic ontology of objects avail-
able to a programmer. This ontology is tied directly to the concept of
a type in computer science. Although computer science types were
initially intimately related to machine processor architecture, they
have evolved dramatically throughout the history of programming,
consistently increasing software’s semantic expressiveness.

In section 2 we examine traditional philosophical treatments of
the concept of a type, both to set the stage conceptually and to show,
in sections 3 and 4, how computer science has enriched the concept
from a programmer’s point of view.

2 The Notion of Types in Philosophy
Discussions of types in philosophy center around two issues: (i) the
type/token distinction, first drawn by Peirce, and its significance for
various areas of main-stream philosophy, and (ii) the theory of types
first advanced by Russell to handle various paradoxes for mathemat-
ical logic.

2.1 Types and Tokens
Peirce used the concept of a type in his theory of signs. A sign is
“something which stands to somebody for something in some respect
or capacity” [9, p. 99]. In particular, words are signs, but they signify
in various ways. If a word is a sinsign — Peirce’s name for a token —

it exists as a single particular thing and has spatio-temporal qualities
involving say, ink on paper or pixels on an electronic display. If a
word is a legisign,

It is not a single object, but a general type... Every legisign
signifies through an instance of its application... Thus, the word
“the” will usually occur from fifteen to twenty-five times on
a page. It is in these occurrences one and the same word, the
same legisign [type]. Each single instance of it is a replica. The
replica is a sinsign [token]. [9, p. 102]

Loosely, the type/token distinction is a general/particular distinc-
tion, and as such it has been associated with many issues in philoso-
phy having to do with the ontological status of abstract entities such
as universals, properties, and sets. But this distinction has a unique
significance for programming with respect to both (i) measuring a
program’s size and run-time, and (ii) understanding equality in pro-
grams.

Measuring a Program’s Size and Run-Time

Consider the following procedure, written in the language C, for
computing the factorial of a non-negative integer:

int factorial(int n) {
int p = 1;
while ( n > 0 ) {

p = p * n;
n = n - 1;

}
return p;

}

The factorial procedure consists of statements, for example
“p = p * n” (note that “=” indicates a variable assignment, not
an equality test). Before a procedure is stored in memory for ex-
ecution, its statements, written in a high-level language, are trans-
lated into machine instructions, which are represented in a binary
language of zeros and ones. A procedure’s size, or amount of space
it takes in computer memory, depends on the number of machine in-
structions a program called a compiler creates when it translates the
procedure’s statements. When counting instructions to determine a
procedure’s size, we count instructions in the type sense. For exam-
ple, there would be one instruction for the statement “p = p * n”
in the factorial procedure.

A procedure’s run-time, however, is determined by how often
its instructions are executed. In factorial the instruction for
“p = p * n” is located in the context of a while statement,
which represents a program “loop”. This loop executes n times,
where n is given as a procedure parameter. Each time the instruction
is executed, a token of it is created and moved into the processor’s
instruction register for decoding and execution. So n tokens of the
instruction exist during the procedure’s execution.

It is worth noting that philosophical treatments of the type/token
distinction usually place it in an abstract/concrete context. Wetzel
[13, web reference], for example, asserts that “Tokens are concrete
particulars; whether objects or events they have a unique spatio-
temporal location”. However, it may be argued that the type/token
distinction for a machine instruction given above is not an ab-
stract/concrete distinction, since machine instruction tokens are
themselves abstractions of electronic state inherent in semiconductor
circuitry. It may be further argued that each token of “p = p * n”,



though unique in time, has, by virtue of its representation in the in-
struction register, exactly the same spatial location as any other in-
struction.

Understanding Equality in Programs

One of the most important aspects of computer programming in-
volves testing computational objects for equality. Such tests are re-
quired for making decisions of all kinds, including when to terminate
loops, how to search data structures, etc. So programmers must learn
how to use equality operations, one variety of which is often indi-
cated with the “==” operator. A programmer learns, for example,
that if the following variables are declared and initialized in Java,

int a = 5;
int b = 5;

then the value of the expression “a == b” is true, whereas for the
following:

Integer a = new Integer(5);
Integer b = new Integer(5);

the value of “a == b” is false.
The reason for this apparent inconsistency is that “5” is the value

of a “simple” type in Java, while “new Integer(5)” is the value
of a “class object” type. Two identical tokens for a simple value are
references to the same entity, while two identical tokens for class
object creation are not. While programmers are taught this distinc-
tion in class/member terms, rather than type/token terms, a similar
distinction is at work.

2.2 Theory of Types
Philosophical treatments of the concept of type also have roots in
the philosophy of mathematics. Although Russell was an ontolog-
ical realist in some respects, he preferred logical constructions to
inferred entities. Numbers, being entities that are routinely manipu-
lated through arithmetic, were nevertheless simply inferred to exist
as abstract entities, so Russell favored the reductionist attempt to de-
fine number in terms of another concept considered less mysterious,
namely class. (It is acknowledged that Frege anticipated Russell in
this attempt.)

The reduction proceeded by identifying a number with the class of
all classes that are similar according to a suitably defined one-to-one
relation, and a set of rules was put forth for transforming proposi-
tions about numbers into propositions about classes. This shifts the
ontological focus from numbers to classes, and as A. J. Ayer put it:

In the case where the reason for undertaking a reduction is that
the type of entity on which it is practiced is felt to be mysteri-
ous, it would seem to be essential that the type of entity which
is substituted for it should not be mysterious to the same degree.
[1, p. 20]

However, classes introduced problems of their own, including,
among others, how to handle infinite classes and the empty class, but
Russell circumvented them by defining classes intensionally in terms
of concepts, rather than extensionally by enumerating their members.
For example, the class of chairs in this room is not described by list-
ing them, but through the locution “the class of all x such that x is

a chair in this room”. Now the ontological focus is on propositional
functions such as “x is a chair in this room”.

While it is natural to suppose that every propositional function de-
termines a class, this supposition led Russell to a famous paradox.
Consider the class C described by “the class of all x such that x is
not a member of itself”. C seems reasonable and would seem to in-
clude, for example, the class of chairs since such a class is not itself
a chair. However, if we ask whether C is a member of itself we get a
celebrated contradiction. This paradox and others like it led Russell
to his theory of types [11].

Russell proposed that a propositional function be restricted to a
domain of objects that are “lower” than the function itself in a hier-
archy of object types. By suitably defining the hierarchy, it becomes
meaningless to ask whether C is a member of itself, and Russell’s
paradox is blocked.

The type hierarchy is described as follows. At the bottom of the hi-
erarchy are individuals. The next level of the hierarchy has first-order
propositional functions, that is, functions that take only individuals
as arguments. The next level includes second-order functions, that
is, functions that take only first-order functions as arguments, etc.
With his type theory Russell created the foundations of higher-order
logic, and spurred alternative type theories by Gödel, Tarski, Church,
and others. The theory of types developed by these philosophers and
logicians evolved into type theory as currently conceived by com-
puter science. This theory provides strong semantic foundations for
the languages used to write programs.

3 Types from a Programmer’s Point of View
The types of computational objects taking part in the computational
processes created by programmers are determined by the program-
ming languages used. Programmers are interested in types for their
expressiveness and how they support good programming practice.
Programming language designers are concerned with types for those
reasons, but also to base their languages on solid mathematical foun-
dations.

Most programmers come to learn what a statement in a program-
ming language means by learning its syntax and grasping various
metaphors — branching, selecting, catching, throwing, and thread-
ing, to name just a few — that help to create an abstract mental
model of what is occurring physically in a computer when a pro-
gram runs (Colburn & Shute 2010). Those with an interest in the
theory of programming languages, on the other hand, including lan-
guage designers, mathematicians, and logicians, are concerned with
the very meaning of computation in programming languages, or pro-
gramming language semantics.

For theorists, the meaning of a program is given by a mathematical
formalism rather than by a mental model of program execution. Such
formalisms range from ones based on sets or categories to ones based
on abstract machines or lambda calculus. (See [12] on operational vs.
denotational semantics). In either case, program semantics for theo-
rists is mathematical and reductivist in nature, while program seman-
tics for work-a-day programmers involves creating mental models of
program execution.

For example, what a programmer conceives as a shopping cart, a
full-fledged program data type, may, on a denotational semantics ac-
count, be considered to be a certain meticulously constructed subset
of the universe of all possible computational values — not what a
programmer has in mind when thinking about and coding computa-
tional processes that manipulate shopping carts. But the expressive-
ness of a programmer’s mental model of what he or she is coding



about is directly dependent on the sophistication of the underlying
programming language semantics. In particular, if the semantics al-
lows the introduction of new types by the programmer through type
constructors, then the expressiveness of the language for the pro-
grammer is limitless. As Cardelli and Wegner put it, “These con-
structors allow an unbounded number of interesting types to be con-
structed from a finite set of primitive types” [2, p. 490]. The ability
to create types that match a programmer’s mental model of his or her
computational domain is a hallmark of object-oriented programming
(OOP).

Long before OOP, however, computer science types had their ori-
gin in the fact that different logic circuitry is required for computing
arithmetic operations on integer numeric values than is required for
real values (numbers that include fractional parts), and also because
integer and real value representations have different binary formats.
Types that are based on circuitry and binary representation are called
processor types. Modern application programmers, however, need
rarely concern themselves with processor types, focusing instead on
language types.

Interestingly, the evolution of high-level programming languages
has seen an enrichment of language types, while processor types have
become relatively impoverished. We next describe how the type sup-
port offered by processors compares with the type support offered by
the high-level languages that are used to control them.

3.1 Processor Types

All processors have instructions for moving uninterpreted data, that
is, bunches of zeroes and ones. When we say a processor has support
for a more complex type we are indicating that the processor can per-
form operations on the data. We place an abstraction on the zeroes
and ones and come up with a conceptual type for which we would
like processor operations that are tailor-made for it. These instruc-
tions provide a representation, in hardware, of our conceptual type,
and the hardware provides an interpretation of the zeroes and ones
that is in keeping with our conception. Figure 1 shows this relation-
ship.

Figure 1. Conceptual Types and Processor Types

An example of a conceptual type is integer. Saying that a processor
supports an integer type means that for two conceptual integers x

and y, there are corresponding bit representations xb and yb such that
applying the processor’s “add” instruction to xb and yb results in a bit
representation corresponding to x+ y. Figure 2 depicts the situation
where the particular conceptual type in a programmer’s mental model
is an integer instruction.

Processor types have evolved in the direction of simplicity in the
past 35 years. Processors whose instruction sets were designed prior
to circa 1990 are typically complex instruction set computers (CISC)
that aimed to bridge the “semantic gap” between high-level lan-
guages and processors. That is, they tried to build type support into

Figure 2. Integer as a Conceptual Type

processors that was closer to the type support offered by the program-
ming languages of the time. A casual observer might find it surpris-
ing that processors whose instruction sets were designed after that
time are typically reduced instruction set computers (RISC), with a
reduced number of processor types.

RISC Processor Types

Current RISC processors support types for data, instructions, and
simple functions. Data types include bit fields (various small sizes),
integers (signed and unsigned, various small sizes), real numbers
(single and double precision), and small chunks of uninterpreted
data. Types that identify parts of instructions include registers,
memory addresses, and displacements (differences between two ad-
dresses). The only support provided for functions is a special type of
jump instruction that saves the current program counter in a register.
This allows a function to return to where it was called from.

CISC Processor Types

Processors whose initial instruction sets were designed before circa
1990 (this includes the Intel X86 and Pentium families of proces-
sors) attempted to support a wider range of types. In addition to the
types supported by current RISC processors, early processors have
supported types for text strings, large chunks of uninterpreted data,
large bit fields, arrays, and complex functions. Support for complex
functions, for example, is illustrated by complex instructions (e.g. the
VAX CALLS instruction) that performed complex manipulations on
the run-time stack.

Modern processors generally have limited direct support for mod-
ern language types on which programmers have come to rely. They
have even less support for three aspects of programming that are
typically an integral part of a well-designed high-level language:
(i) defining equality between computational entities, (ii) providing a
naming context for these entities, and (iii) detecting errors that occur
during computation.

Equality. When we conceive of a type, we are implicitly deciding
what the tokens are for the type. For represented data, that requires
deciding when two representations are the same. Processors, whether
RISC or CISC, only have direct support for two kinds of equality test:
(i) the same bit representation, and (ii) the same location in memory
(equality of addresses).

Naming Context. A processor, by itself, provides little in the
way of a naming context. Registers and memory locations are just
named by bit patterns. Assemblers improve the situation somewhat
by assigning symbols to the registers and letting programmers de-
fine symbols for memory locations. However, these names are all in
one global name space. To some extent, operating systems add some



flexibility by supporting separate compilation. Individual compila-
tion units can have their own namespace but can declare some of
their symbols to be global.

Type Errors. For effective programming we need some indica-
tion of errors in our programs. Processors recognize very few types
of errors, including trying to execute illegal instructions, giving in-
valid arguments to instructions (e.g. divide by zero), and referencing
invalid memory addresses. It is easy to make type mistakes with pro-
cessor instructions. An integer “add” instruction can be applied to
data that is intended to represent real numbers. Such errors are typ-
ically not even detected by a processor. The only error indication is
incorrect program results.

3.2 Language Types
Clearly, processor types are not adequate for today’s programmers.
The move from CISC to RISC has seen a corresponding increase in
the reliance of high-level languages and their compilers to provide
for built-in language types such as structures, higher-order functions,
and objects in the technical sense of OOP.

Such language constructs provide a much better match to a pro-
grammer’s conceptualization of the world than is provided by pro-
cessor types. In Figure 3, processor types have been replaced by lan-
guage types.

Figure 3. Conceptual Types and Language Types

3.3 Abstract Data Types
High-level language types are still often not enough to satisfy a pro-
grammer’s desire for expressiveness. As every beginning computer
science student learns, even high-level languages must be used to
implement types the languages do not directly provide, such as lists,
stacks, queues, binary trees, hash tables, etc. Such types are called
abstract data types (ADTs) because they are supported by neither
the processor nor the programming language. Instead, they must be
implemented “on top of” the language with their operations (e.g. re-
moving from a list, pushing on a stack) provided as a service by
procedures or functions that hide the details of their implementation.
ADTs such as those above are ubiquitous in programming and of-
ten provided by language libraries. They are so indispensable to pro-
grammers that from their point of view ADTs provided by libraries
are indistinguishable from types defined by the language.

3.4 Programmer-Defined Types
But even a rich set of ADTs provided by a language library does not
match the modern programmer’s mental model, which might include
shopping carts, characters in a game, objects in a simulation, etc.
While language libraries can provide the foundational abstractions

on which to build, they cannot anticipate all the types of entities pro-
grammers will think about when faced with developing software.

The key to high-level language expressiveness for programmers
is therefore a mechanism allowing them to define their own types.
When a language allows programmer-defined types, a programmer’s
conceptual types, namely the types of entities that populate both the
programmer’s application domain and her mental model of it, are
more closely matched by the types made available by the language.

Many languages that allow the creation of programmer-defined
types only allow data of those types to be passive, meaning they can
be asked for their data but they cannot otherwise act on their own be-
half. Some languages allow programmers to define their own types,
but they further add a messaging mechanism that allows data items
to request information and changes of each other. When data items
are active in this sense, they are technically called “objects.” In the
object-oriented programming paradigm, data objects can be viewed
as participating collaboratively in computation like processing nodes
in a network. This gives programmers a medium of description that
allows them to bring about computational processes whose objects
behave in ways that are closer to how objects behave in the “real”
world.

In addition to providing active data types, object-oriented lan-
guages provide better support for the three important aspects of pro-
gramming previously mentioned: defining equality, providing a nam-
ing context, and detecting errors.

Equality. Most object-oriented languages provide a default con-
ception of equality based on identity: two objects are the same if they
occupy the same memory location. However, equality can be overrid-
den to allow programmers to specify their own criteria for equality.
Consider these lines of Java code:

Integer a = new Integer(5);
Integer b = new Integer(5);

Although the expression “a == b” is false by virtue of the fact
that a and b occupy different locations in memory, the expression
“a.equals(b)” is true because the value represented within those
locations is the same.

Object-oriented programmers have the freedom to define
“equals” in any way they wish. This freedom in effect allows them
to define custom type/token distinctions; the criteria for what counts
as two separate tokens (objects) of the same type can be made as
strong or as weak as is called for by the application.

Naming Context. Some object-oriented languages are strongly
typed, meaning, in part, that objects of the same type are grouped into
a class. Such grouping has significant advantages, including compile-
time error checking, more efficient executable code, and the avoid-
ance of name conflicts.

For example, consider the following Java statement:

System.out.println("Hello World");

Here, System is the name of a standard library class. This class
has an attached variable, out, which is the standard output stream
for a program. This variable is an object of class PrintStream.
The PrintStream class defines the println() operation (also
called a “method”), that prints its argument followed by a new line.
The names “out” and “println” are interpreted in the namespace
of two different classes, allowing the classes to be defined without a
tedious effort to avoid name conflicts.



Type Errors. All objects taking part in computational processes
have types. In strongly typed languages, program variables that refer
to objects must also have types. This offers opportunities for com-
pilers to catch type errors, such as attempting to divide an integer
by a text string, before the program is run. Since compiler errors are
often easier to fix than run-time errors, this can be an advantage by
minimizing a software project’s debugging effort.

However, some object-oriented languages, such as Smalltalk,
Javascript and Common Lisp Object System, are not strongly typed,
permitting their variables to refer to objects of any type. In these lan-
guages, type errors are only reported at run-time. The trade-off is
that development can often be quicker, since meticulously attending
to type detail can be time-consuming. These languages are therefore
often used for rapid prototyping and client-side scripting.

The OOP paradigm, which gained hold in the 1980s with lan-
guages like Smalltalk and C++, and flourished in the 1990s with the
introduction of Java, required a radical change in how programmers
think about designing code. Data structures and algorithms are still
central in programmers’ thinking, but instead of being controlled by
functions and procedures, they emerge as objects and their methods.
Objects, rather than procedures, are in control, and objects can be
made to model anything: physical objects, events, relationships, sys-
tems, users, etc. Since programmers can create types for anything
they can think of, they can code in essentially the same language in
which they think.

4 Types and Code Reuse

The size and complexity of modern software systems preclude “start-
ing from scratch” for each project. Ideally, software would be con-
structed out of components previously written in other contexts by
putting them together to create an entirely new application, much like
a new piece of electronics hardware can be built from modules “off
the shelf.” While this ideal has not been realized, software reusabil-
ity is a major objective of OOP development. The “object” language
construct offered by OOP lets a programmer code at a high level of
abstraction. The higher a level of abstraction a programmer codes
in, the more reusable that code becomes if the programmer designs
those abstractions well. As we show in the rest of this section, this
reusability is closely connected to types in OOP.

4.1 Reuse Through Class Inheritance

In OOP languages like C++ and Java, like objects are grouped into a
class, which serves as the objects’ type. Class terminology provides
language constructs that gather together coded descriptions of the
grouped objects’ state and methods. As such, classes are essentially
static abstractions used by programmers to describe the instantia-
tion and behavior of objects at run-time. In a sense, classes are the
medium of description for programmers to describe computational
interactions, while objects populate the medium of execution.

Programs “stamp out” instances of classes while they run, using
linguistic operators such as “new” followed by the name of the class
they wish to instantiate. In this way, the class/object distinction for
the programmer is analogous to the type/token distinction for the
philosopher.

When a programmer defines a new class, a new type is introduced,
and the class definition serves as the implementation, i.e. the internal
code representation of the state and methods, of every object in the
class. That implementation can be reused by any class that is made a

subclass. Subclassing is built into many OOP languages and is rep-
resented graphically by the Unified Modeling Language (UML) [7],
as shown in Figure 4. The Child subclass defines its own state (at-

Figure 4. Class Inheritance

tributes) and methods but also inherits the state and methods of the
Parent superclass. When properly used by a programmer, the sub-
class/superclass relationship is also an is-a relationship. That is, it
should make sense to say that any instance of Child “is” an instance
of Parent. For example, any rectangle is a polygon, but the converse
is not necessarily true.

The subclass/superclass relationship among classes imposes a cor-
responding subtype/supertype relationship among the objects that are
instances of those classes. OOP programmers are taught to under-
stand class inheritance through supertype and subtype relationships
among the objects they create in order to achieve code reuse. Class
inheritance, built into the language of C++ and Java, lets a program-
mer define a new kind of object rapidly in terms of an old one, and
get a new implementation almost for free, inheriting most of what he
or she needs from existing classes.

This advantage must be balanced with the understanding that when
programmers are defining classes for a program they are not just
classifying static entities; they are defining classes and types for ob-
jects that are dynamically changing. Mathematically and logically it
makes sense to define a subtype by imposing constraints on attributes
of a parent type. For example, a square “is a” rectangle whose width
and height are equal. Thus it might make sense to define a class
Square as a subclass of Rectangle. There is an inheritance benefit
to doing so, since, for example, Square could inherit methods for
computing area and circumference from Rectangle. However, inher-
itance will cause type problems if Rectangle also has methods for
changing the width and height, since these “mutator” methods al-
low Square instances to violate their constraints. Programmers must
always base their type systems not just on mathematical or logical
conditions; they must also take change into consideration.

Programmers must also learn to distinguish between an object’s
class and a program variable’s type. Variables are used to refer to
objects. Because Parent is a supertype of Child, a Parent variable
can refer to a Child object, as shown here:

Parent child = new Child();
child.method1(); // No error

However, since Parent does not define method3, the code shown
below does not work:



Parent child = new Child();
child.method3(); // Error: no such method

While this problem is avoided by typing the child variable as Child,
this makes the code overly coupled to the Child type, as we discuss
below.

The concept of a subtype may not have occurred to Peirce when
conceiving the type/token distinction, but it is essential for a class-
based object-oriented programmer. It may be possible to extend
Peirce’s language and observe that with respect to the child variable
in the code above, the object it refers to is a direct token of the Child
type and, by virtue of inheritance, an indirect token of the Parent
type.

The superclass/subclass relationship and the accompanying con-
cept of inheritance allows a programmer to create a type hierarchy
that matches his or her mental model of the entities in the application
domain. The hierarchy may correspond to perceived “natural kinds”
in the world in the form of domain classes, or it may be created to
present a framework for expessing foundation classes necessary for
coding the low-level details of input/output and graphical user inter-
faces. In either case, the hierarchy is programmer-created, and should
not be confused with the type hierarchy first proposed by Russell to
dissolve his famous paradox (see section 2.2).

4.2 Abstract Classes and Types
When a programmer defines a class, each method is given a unique
signature, including the method name, the order and types of data
the method requires as arguments, and the type of data that can be
communicated as a result. While a signature identifies a method, it
does not provide an implementation, which is a description of the
actual code that is run when the method is invoked.

Many classes are defined by giving each method both a signature
and an implementation. Such classes are called concrete. However,
language designers have found it useful to allow the definition of
classes whose implementation is only partially given. In such a class,
all methods have signatures, but not all methods have implementa-
tions. If an object were an instance of a partially implemented class,
to invoke one of its unimplemented methods would cause an error.
Therefore, partially implemented classes, though legal, may not be
instantiated, and are called abstract.

Abstract classes are thus like types that have no tokens. This may
have seemed strange to Peirce, who considered the type/token dis-
tinction with respect to words. Just to mention the concept of a uni-
corn, for example, is to use a “unicorn” token. Although an abstract
class represents a bonafide type, there can never be an object that
instantiates it. The ability to legislate such a restricted notion is in
keeping with computer science’s status as a discipline that creates its
own subject matter.

If just one of a class’s methods is not implemented, the class is
abstract. However, it may have state, in the form of attributes, and us-
able implemented methods. Abstract classes are therefore intended to
be subclassed by other classes that provide the needed implementa-
tion and then themselves become instantiated. This seems to present
a puzzle with respect to types and tokens: If some of an abstract
class’s implementation is reused by a subclass, how can it be that
an abstract class represents a type with no tokens? The distinction
between direct and indirect tokens introduced above is helpful here.
Although an abstract class represents a type with no direct tokens, it
may have indirect tokens by way of inheritance.

Because an abstract class can have many subclasses, the set of
things that can function as indirect tokens of an abstract type can

be wide and diverse. Correspondingly, code that uses variables of
abstract class types can refer to objects of wide and diverse classes,
resulting in diverse and flexible behavior.

4.3 Reuse Through Object Association
While useful, class inheritance (also called implementation inheri-
tance), whether from concrete or abstract classes, is just a mecha-
nism for code and representation sharing. Because it is supported by
the syntax of some popular OOP languages and fairly easy to under-
stand, it is over-emphasized compared with the advantages associ-
ated with other approaches to reuse.

Consider the class inheritance hierarchy in Figure 5 that might be
employed to represent various recordings. There are two problems

Figure 5. Misuse of Class Inheritance

with this representation. First, the classes are so similar there would
be little difference in their implementations. Second, every time a
new kind of recording is conceived, a new class must be created.

A better representation sees code reuse not at the class level, but at
the object level. If an object representing a recording has another ob-
ject representing a recording category as part of its state, the matter
is simplified. Relationships between objects like this are called asso-
ciations and represented in UML as in Figure 6. Now when a new

Figure 6. Object Association

kind of recording is conceived, a new RecordingCategory object is
created with an appropriate description, but no new class needs to be
defined.

Associations among objects reflect has-a relationships rather than
the is-a relationships among subclasses and superclasses, but they
also offer opportunities for code reuse. If an object A has an asso-
ciated object B as part of its state, and if B has a method (or meth-
ods) that accomplish something that A needs to accomplish, then A
can delegate the work to B, thereby reusing B’s code. To understand



how this delegation is best accomplished in class-based languages,
we must understand the concept of an interface.

4.4 Reuse Through Interface Inheritance
We have seen how abstract classes can “widen” a variable’s type by
declaring methods and forcing other classes to implement them. This
idea is taken to its extreme with the concept of an interface type. An
interface is just a named list of method signatures. Loosely speak-
ing, an interface is like a class that has no state and none of whose
methods has an implementation. If a class is defined to handle all the
method signatures listed in an interface, it is said to implement the
interface.

Figure 7 shows two classes implementing the same interface.
Neither Child1 nor Child2 inherits code from Parent. However,

Figure 7. Interface Inheritance

code that uses interface types can more easily reuse code from other
classes through interface inheritance. Interface inheritance makes it
easier to substitute one object for another in high-level code, thereby
exploiting reuse through object association. The code below shows
interface inheritance at work.

Parent y; // Give y interface type
y = new Child1(); // y refers to some object
y.method1(); // Get some behavior
y = new Child2(); // y refers to new object
y.method1(); // Same code, new behavior

Interface types, like abstract class types, can only be applied to vari-
ables, not the objects to which variables refer. So, also like abstract
class types, interfaces are types without any direct tokens. A class
that implements an interface type is a subtype of the interface type,
so an interface type may have a wide and diverse set of indirect to-
kens. Because an interface offers nothing in the way of an implemen-
tation, code variables of interface types are even “wider” than those
of abstract class types.

Note that if the variable y above does not have the interface type
Parent, flexibility is lost as shown here:

Child1 y; // Give y class type
y = new Child1(); // y refers to some object
y.method1(); // Get some behavior
y = new Child2(); // Error: type mismatch
y.method1(); // No Child2 behavior

4.5 Polymorphism

The ability to elicit different behavior from the same code in this way
is called polymorphism, and it lies at the heart of much of the success
of modern object-oriented programming.

The simplest use of polymorphism is to abstractly define a fixed
behavior while allowing for different implementations of that behav-
ior. In the Java standard library, for example, this is illustrated by
the Set interface. The primary methods in this interface specify fixed
behavioral expectations for adding elements to a set, removing ele-
ments, determining membership, iterating through the members of a
set, and determining equality of two sets. Implementations of the Set
interface differ primarily with regard to performance characteristics
depending on the context. If the set is volatile, i.e. frequently modi-
fied, then a TreeSet implementation is available that uses a balanced
binary tree data structure to efficiently manage adds and deletes. If
the set is nonvolatile but often interated over, a CopyOnWriteAr-
raySet implementation is optimized for fast traversal. If the set has
members that act as values for a program’s enumerated type variable,
an EnumSet implementation is optimal

Polymorphism has, however, more interesting uses than to just ad-
just implementations for efficiency. In such uses there is no fixed
behavior defined at the interface level, so that implementations can
differ substantially from one implementation to another. In Java this
is illustrated by the Comparator interface. A display for a table with
multiple columns may have a variable of type Comparator to use
when sorting rows. Each column can have an object that implements
Comparator in its own way. For example, a column representing
prices simply compares numbers, while a column representing items
in a shopping cart compares textual descriptions of the items. When
the user clicks on a table column header the comparator for that col-
umn is assigned to the variable and the table rows are re-sorted. This
allows the user to dynamically determine the ordering of the rows.

Comparators are also useful for building complex ordered search
structures that support generic types. For example, when program-
mers use the TreeSet implementation, they provide a type parameter
indicating the type of element in the set. Thus TreeSet<String> de-
scribes a set of character strings while TreeSet<Integer> describes
a set of integers, to name just two. Rather than having to separately
define TreeSet<String> and TreeSet<Integer> classes, program-
mers developing the TreeSet search structure can design one class
with an appropriate type parameter. Class instances are then created
with a comparator argument that provides the appropriate searching
behavior.

4.6 Design Patterns

While class inheritance promotes code reuse at the expense of imple-
mentation dependencies between a class and its subclasses, interface
inheritance and polymorphism can all but eliminate such dependen-
cies, resulting in two important principles of reusable object-oriented
design: (i) Program to an interface, not to an implementation [8,
p. 18], and (ii) Favor object association over class inheritance [8,
p. 20].



Interface types are of central importance to class-based object-
oriented programmers, because by separating method signatures
from their implementation, they decouple code that uses interface
typed variables from code that implements the methods those vari-
ables use. We have argued elsewhere [6] that decoupling pervades
both computer science as a discipline and the wider context of com-
puting at large. For OOP, decoupling means eliminating dependen-
cies between objects that result in changes to one object requiring
changes in another. So if a programmer who doesn’t use interface
types wants to use Child2’s method1 in the code at the end of sec-
tion 4.4, another variable of type Child2 must be introduced, com-
plicating the code. The problem is that the code is too tightly coupled
to the Child1 class.

Object-oriented programmers have developed a design discipline
that emphasizes object decoupling by using design patterns (Gamma
et al. 1995) that focus on interface types. For example, the error-free
code in section 4.4, as simple as it may look, uses a design pattern
called Strategy [8, p. 315] to allow the code’s behavior to be easily
changed. Like many design patterns, Strategy employs object asso-
ciation and interface typing to accomplish its objective, which is to
delegate the execution of a strategy in some context to another object.
Such delegation allows the replacement of that object by another that
implements the same interface, in order to get different (possibly rad-
ically different) behavior. The Strategy design pattern is represented
in UML as shown in Figure 8. Note that the UML model shown in

Figure 8. The Strategy Design Pattern

Figure 7 is an instantiation of the general pattern shown in Figure 8.

4.7 Roles As Types
In the “real” world, humans often make classifications not of indi-
vidual entities, but of roles that such entities play in complex inter-
actions. For example, national constitutions and laws define complex
protocols governing the interactions between various legislative, ex-
ecutive, and judicial agents. In democratic countries, at least, we ex-
pect these roles to be designed polymorphically. That is, within broad
limits they do not restrict people acting in these roles to certain types
of behavior such as liberal or conservative; they only govern how
they interact to define new laws, enforce them, and interpret them.

We may even metaphorically describe the governmental positions
as Strategy references. When citizens elect new individuals to serve
in these positions through the election process, it is analogous to vari-
able y changing its reference from an object of class Child1 to an

object of class Child2 in the code in section 4.4. By electing new
officials, citizens can implement different political behavior.

Experienced object-oriented programmers consider roles to be
types just as much as they consider individual entities to be types. For
example, when designing software for keeping track of information
about people in a complex educational organization, a programmer
could define a Person class with several subclasses such as Student,
Faculty, and Administrator. This design treats people as tokens in
a hierarchy of types. While this might work in a simple program,
it would require significant changes when the software grew to deal
with more complex needs, including situations where people change
roles, or have two or more roles at the same time. A better design
is to create a type system where the tokens are abstractions (roles)
instead of concretes (people).

To emphasize the importance of roles in programming, design pat-
terns are often described in terms of participants. For example, the
Observer design pattern [8, p. 293], shown in Figure 9, defines a
one-to-many dependency between objects so that when one object
changes state, all of its dependents are notified and updated automat-
ically. Two of the essential participants in Observer are a Subject,

Figure 9. The Observer Design Pattern

which provides a mechanism for registering and unregistering ob-
servers, and an Observer, which provides a mechanism for respond-
ing to change. In complex software these participants are not types of
entities. Instead they are types for roles in a certain kind of interac-
tion between objects, and as such they are abstract participants in the
pattern. Defining interfaces for these participants allows diverse ob-
jects with different external responsibilities, that is, responsibilities
not inherent to the Observer design pattern, to play the roles in the
pattern. These objects are concrete participants in the pattern. The
Concrete Subject adds methods that observers use to determine the
nature of the observed change, while the Concrete Observer uses
those methods to respond to the change. When used in this way, the
interface types Subject and Observer are therefore doubly abstract:
(i) they type variables, not objects, and (ii) they type roles, not enti-
ties fulfilling those roles.

This is not surprising given that computer science creates its own
subject matter in the form of abstractions. But the type discipline
offered by high-level languages, in particular object-oriented ones,
accounts for the linguistic richness that allows programmers to code



with the objects of their thought.
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A Compilation of Dutch Computing Styles, 1950s – 1960s

1

Edgar G. Daylight

2

Abstract. Post-war researchers in applied mathematics experi-
enced a technical shift from the specific to the general: from the
down-to-earth engineering activity of instructing a specific finite
machine for a particular problem to a science of programming an
abstract computer for a family of problems. This technical shift
was enriched by local styles and habits of research. Understanding
the different dispositions towards this shift is a rich topic for the
history and philosophy of programming, a topic which we address
here by comparing and contrasting the work of the following
Dutch historical actors: Van der Poel (Delft), Van Wijngaarden
(Amsterdam), Blaauw (Twente), and Dijkstra (Eindhoven).

Post-war researchers in applied mathematics experienced a tech-
nical shift from solving specific calculational problems to reasoning
in terms of general principles. For example, during the 1950s and
1960s, special purpose machines in industry were gradually replaced
by general-purpose computers (e.g. [5, p.5–7][10]). Similarly, en-
gineering concerns about the finite limitations of a machine waned
when the metaphor of language took hold of the computing field
at large [9, 24]. A high-level programming language allowed the
programmer to solve a general mathematical problem on a variety
of computing machines. In short, the history of computing can be
viewed as an emerging dichotomy between specialization and gen-
eralization. Specialization stands for the down-to-earth engineering
activity of instructing a specific finite machine for a particular prob-
lem. Generalization refers to a science of programming an abstract
computer for a family of problems.

Just like on the international scene, computing in the Nether-
lands was enriched by its local styles and habits of research. Dutch
actors of international standing were, among others, Van der Poel
(Delft), Van Wijngaarden (Amsterdam), Blaauw (Twente), and Dijk-
stra (Eindhoven). Each actor led his own distinct school of thought
but shared the international ambition of creating a safe institutional
harbor for their emerging profession: first for applied mathematics,
later for computer science.

Dutch researchers in applied mathematics, also called numerical
analysts, were jointly breaking away from the pure sciences which
had dominated Dutch academia for so long [1]. This common goal
was reflected in each local style. Indeed, the pureness in traditional

mathematics characterized Dutch research in computing. The in-
stitutional struggle paralleled the aforementioned technical shift; in
fact, they are two sides of the same coin. All Dutch actors, in search
for institutional recognition, stressed and defended their own distinct
notion of “generality” (alternatively: “simplicity” or “elegance”). As

1 This paper is a concise summary of a Dutch chapter in a forthcoming book
entitled De geest van de computer. The author also plans to publish English
derivatives of this work in the near future.

2 Freelance post-doc researcher at Eindhoven University of Technology, The
Netherlands, email: egdaylight@dijkstrascry.com

a result, the diversity in local styles overshadowed their common
goal, leading to conflict among each other and even causing some
to leave the country.

Among the various Dutch cities, Delft and Amsterdam stood out
during the 1940s. The former was a center of excellence in engineer-
ing. All the aforementioned researchers with the notable exception of
Dijkstra were educated as engineers in Delft. After the second world
war, Amsterdam became the Dutch center for “applied mathemat-
ics”. Van Wijngaarden was the man in charge. All aforementioned
researchers passed through Amsterdam during the 1950s.3

Besides numerical analysis, Amsterdam was already an interna-
tionally renowned center in the well-established discipline of math-
ematical logic. It is no coincidence that in later years, during the
1960s, Van Wijngaarden and his student De Bakker would pick up
some specific technical ideas from logic and influence prominent in-
ternational researchers in computing.

During the 1950s, knowledge of mathematical logic in connection
with computing was scarce in both the Netherlands and abroad. An
exception was Van der Poel in Delft. He applied Turing’s theoretical
1936 notion of universal machine in his practical 1952 design of the
ZERO computer [27]. Van der Poel was one of the first in the Nether-
lands to make the transition from the “specific” to the “general”. He
first built what he later called a “pre-Von-Neumann” machine, the
TESTUDO (cf. [29]). From the early 1950s onwards he built several
“Von-Neumann” machines in the sense that both data and instruc-
tions were placed in the same memory. These machines were quite
successful, especially in comparison with some of Amsterdam’s first
computers. The reason lies in Van der Poel’s insistence to specialize
his programs for the machine and the mathematical problem at hand
and not to follow Van Wijngaarden’s linguistic ideals to the extreme.
Indeed, Van der Poel was and remained first and foremost an engi-
neer. He did not abstract away from the finiteness of the machine. On
the contrary, he viewed Turing’s 1936 paper [26] and logic in gen-
eral in a finite setting, as he demonstrated in his 1956 dissertation
The Logical Principles of Some Simple Computers [28].

Van Wijngaarden and Dijkstra were reasoning linguistically dur-
ing the 1950s in Amsterdam; that is, from a language to a machine, as
opposed to the common approach of reasoning about a programming
language in terms of its implementation on a real, finite machine4.
Dijkstra moreover relied on his education in theoretical physics from
Leiden. Just like a table is made up of molecules which in turn are
made up of atoms, software too can be viewed in such an hierarchi-
cal manner. His analogy with physics5 may help us understand why

3 See [1][3][10]. Even Van der Poel, who did not officially join the Mathe-
matical Center in Amsterdam, was affiliated with Van Wijngaarden as his
PhD student [28].

4 Van Wijngaarden and Dijkstra’s linguistic reasoning and their notion of
generality are described in [9][12].

5 See Dijkstra [15]. Also the comments made by Van der Poel and De Bruijn
in interviews confirm this: “Dijkstra was neither a mathematician nor an



he viewed the problem of translating ALGOL as an hierarchical prob-
lem. He introduced an intermediate machine-independent level in the
Dijkstra-Zonneveld compiler, a level which is a precursor to the now
widely used virtual machine [9]. Dijkstra continued with his layered
software approach during the 1960s; his THE operating system [17]
and his later Notes on Structured Programming [18] had such a great
impact that he was awarded the Turing award in 1972.

Dijkstra became professor in numerical analysis in Eindhoven in
the fall of 1962 [3]. By that time he had already distanced himself
from Van Wijngaarden’s ideology [11]. He would continue to do so,
even openly at conferences as in Vienna 1964 [25, p.21], ending with
a climax in 1968 when he wrote a Minority Report (cf. [23]) to ex-
press his misgivings about ALGOL68.

Van Wijngaarden stayed in Amsterdam and continued his linguis-
tic line of research. His sense of generality, perceived as unorthodox
by many, led him to introduce innovative programming constructs
which are still used today. Moreover, Van Wijngaarden started to bor-
row concepts from logic as early as 1962 [30, p.11]. His student De
Bakker would go much further in this direction [13, p.21], reading
the literature of Davis [7] and, hence, of Turing, and also the work of
Markov, Rabin, and Scott. Unlike Van der Poel, De Bakker applied
these ideas from logic in connection with the language metaphor6.

Blaauw brought a lot of know-how with him when he joined Van
Wijngaarden’s group in 1952. Having worked with Aiken in Harvard,
he was able to show the Amsterdamers Loopstra and Scholten how
to build reliable computers that actually work [2]. In 1955, he left the
Netherlands again, this time to join IBM in New York. There he expe-
rienced the struggling transition from the “specific” to the “general”
in the commercial setting of IBM machines.

Blaauw was involved with both the IBM STRETCH computer and
the later IBM\360 system. The “general purpose” character of these
computers stood in sharp contrast to the many special-purpose
stored-program machines7 that IBM had been building during the
1950s and early 1960s [5, 10]. Instead of building a special machine
for data processing and another one for scientific computing, Blaauw
and his close colleagues started to see the all-purpose character of
their stored-program computers. This realization was reflected in the
names of their computers: the word “stretch” alluded to stretching
over different application domains, and “360” referred to 360 de-
grees; that is, to a machine that could handle all application domains.
It should be emphasized here that, just like the majority of IBM em-
ployees, Blaauw was an engineer, not a theoretician who was aware
of earlier developments in logic. Translated from his Dutch words:

That was really a new idea, that you have a modest machine
that can execute exactly the same instructions as the big ma-
chine; the only difference is that the big machine runs faster
and has more memories. So that was a key insight, that a bigger
machine need not be designed differently. [10]

Blaauw became famous at IBM during the early 1960s when he in-
troduced his three levels of concern: architecture, implementation,
realization (cf. [4]). He showed the commercial world how to sys-
tematically build general-purpose computers, in line with some of
the abstractions that had already been put on paper by Dijkstra in
1953 [16].

engineer, he was a physicist” (paraphrased) [8, 11].
6 As an interesting aside, Hoare’s influential 1969 paper on axiom-based se-

mantics [21] and logic programming [6] both have an untold history that
starts with Van Wijngaarden’s and subsequently De Bakker’s distinct views
on how language and machine relate to each other.

7 A machine can be both a special purpose machine and a stored program
machine.

In 1965, Blaauw started an academic career at the recently
founded Technische Hogeschool Twente. He brought his newly ac-
quired notion of generality with him, generality in the form of IBM’s
APL language. APL is an abbreviation for “A Programming Lan-
guage” [22]; Blaauw advocated using only one general language
(APL) to design both the software and hardware of a computer. In
Twente, Blaauw taught his students how to design the IBM way.
Twente’s computing style, as advocated by Blaauw and Duijvestijn,
was one of prototyping: first build a prototype of the system (by pro-
gramming in APL), experiment with that prototype and only after-
ward start implementing the real system.

Twente’s emphasis on prototyping stood in sharp contrast to what
Dijkstra was delivering in Eindhoven during the 1960s. In fact, al-
ready during his earlier years in Amsterdam, Dijkstra wanted to
prove a program correct by mathematical reasoning alone [12, Sec-
tion 3.2.2]. Testing, as advocated in Twente, was a last resort to
Dijkstra. Moreover, one of the technical reasons why Dijkstra dis-
tanced himself from Van Wijngaarden’s linguistic constructions was
because he could not convince himself that they were mathematically
correct [25, p.21]. The main incentive for Dijkstra to design his THE
operating system in a layered manner was because it aided him in
proving its correctness [17].

During the 1960s, Van Wijngaarden and especially De
Bakker linked mathematical logic to programming lan-
guages [13][14][31][30]. Dijkstra, by contrast, would only become
convinced of logic’s role during the early 1970s [20, p.346]. And
even then he would remain cautious, not wanting to blindly follow
the logical tradition which was starting to dominate much of
computing research (cf. [19]). The coming man in Dutch academia
was Van Wijngaarden’s successor, De Bakker. His appeal for logic
was heard in many Dutch cities, including Eindhoven. Dijkstra left
the Netherlands in 1984 to continue his research at the University of
Texas at Austin.
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Anatoly Kitov and ALGEM algorithmic language
Vladimir V. Kitov1 and Valery V. Shilov2 and Sergey A. Silantiev 3

Except several publications (see, for example [4]), many achieve-
ments of Soviet programmers for the period from 1950 till 1980 prac-
tically are still remained unknown abroad. The reasons for this are
several secrecy of some works, many open papers were published in
Russian language and thus were unavailable for foreign scientists etc.
But these achievements were very considerable. It is sufficient only
to mention such original developments as REFAL metalanguage for
formal language text processing (V. F. Turchin, middle of 1960) or
El’-76 high level language (V.M. Pentkovsky, middle of 1970) which
was Assembler language as well.
One of the scientists who made significant contribution to the the-

ory and practice of algorithmic languages development was Anatoly
Kitov (1920-2005) – outstanding Russian scientist in the field of in-
formatics and computing (Fig. 1) . Another famous Russian scien-

Figure 1. Anatoly Kitov, c1965

tist, IEEE Computer Society Computer Pioneer academician Alexey
Lyapunov called Anatoly Kitov the first knight of Soviet cybernetics.
This was not accidentally. Anatoly Kitov was the real pioneer and the
words the first and for the first time can be applied to all stages of his
scientific career. A. Kitov was the author of the first in the USSR pos-
itive article about cybernetics which was not recognized by official
Soviet communist ideology. He had published the first Ph. D. thesis
on programming, the first Soviet book about computers and program-
ming, the first articles on non-arithmetic utilization of computers. He
was the author of the first project of wide-national computer network,
the first national textbook on computer science, the first scientific re-
port on management information systems (MIS), etc. He designed
the most powerful Soviet computer of that time, established the first
scientific computer Centre (the so called Computer Centre nr 1 of
the USSR Ministry of Defense), developed the associative program-
ming theory, created the standard industrial management information
1 Institute of History of Natural Sciences and Technics Russian Academy of
Science, email: vladimir.kitov@mail.ru

2 MATI – Russian State Technology University, email: shilov@mati.ru
3 MATI – Russian State Technology University, email: intdep@mati.ru

system (for the Ministry of Radio Engineering Industry) etc. The to-
tal amount and innovative quality of his scientific works are really
impressive. Unfortunately due to some political reasons his research
activity was not officially recognized in Soviet Union [6].
In the second half of nineteen fifties Anatoly Kitov for the first

time formulated proposals for complex automation of information
processing and state administrative management on the base of Inte-
grated computer centre state network (ICCSN). On January 7, 1959
A. Kitov sent in the Central Committee of the Communist Party of
the Soviet Union the letter about the necessity of National economy
automated management system on the base of ICCSN. It was first in
the world proposal on designing of national state automated system
for economics management. The leadership of USSR partly adopted
Kitov’s project but the main idea about the structural reconstruction
of National economy management system was rejected [7].
That is why in Autumn1959 Anatoly Kitov sent the second letter

in the Central Committee in which he proposed the new innovative
project which advanced the modern times on several dozen years. It
was the project named Red Book establishing of integrated computer
centre state network of dual designation (for economics management
and defense control). But once more due to the political reasons this
project was rejected and, moreover, its author was excluded from the
Communist Party, dismissed from his job at Computer Centre and
later discharged from the Soviet Army.
At the beginning of nineteen sixties A. Kitov was the head and

scientific supervisor of the group of programmers who were devel-
oping large program complex for real time military computer used
in air defense system. At this time he was working at Scientific Re-
search Institute nr 5 of the Ministry of Defense. Material which de-
termined the specifications for the future programming language had
been got by A. Kitov from his practical experience during the realiza-
tion of above mentioned project. However he had begun development
of ALGEM (ALGorithms for Economy and Mathematics) language
some years later, when after his dismissal from the army he worked
at Main Computer Centre of the State Radio-Electronic Committee.
ALGEM was designated for the programming of the economical,
mathematical, logical and control (including the real time control of
the technical systems) tasks. In particular the extremely important
was the aim of this work to design the language for the programs
for processing the large (super large at that time) information arrays
of complex but determined structure. In 1965 the first version of AL-
GEM was finally developed. The expertise of ALGEM was fulfilled
in some Soviet scientific institutions and in particular at Computer
Centre of Siberia Branch of USSR Academy of Science (facsimile
of the letter from the USSR State Committee for Scientific Research
Coordination to Siberia Computer Centre with the request of exper-
tise is shown on Fig. 2).
In 1967 A. Kitov published the monograph The programming of

informational logical tasks in which for the first time ALGEM lan-



Figure 2. The letter of USSR State Committee for Scientific Research
Coordination.

guage was described [1]. This language was realized in the system
of computer programming ALGEM ST-3 (ST-3 – Syntax-directed
Translator, the 3rd version) described in 1970 in monograph [5]. Be-
sides ALGEM the system included translator and standard subrou-
tines library. The system ALGEM ST-3 was realized on the base of
the second generation computer “Minsk-22” (Fig. 3).

Figure 3. Soviet computer Minsk-22

The development of this computer was ended in 1964. For that
time it was middle class computer with the efficiency of 5-6 thou-
sand operations per second, ferrite core main memory with the 8196
cell capacity of 37 bit each and external memory on magnetic tape
with the 1.6 million cells. Computer was produced by series from
1965 till 1970. Minsk-22 was one of the most mass computers for
that time and altogether 953 machines were manufactured. It was in-
stalled at hundreds of computer centres in various Soviet ministries
and later in some socialist countries. Appropriately ALGEM ST-3
included in Minsk-22 software was also had several hundred of in-
stallations and was widely used during the development of various
applied systems which were designated for the processing of hospi-
tal charts, application forms, results of experiments etc.
According to the concept of the author ALGEM must have been

the procedure-oriented programming language. That is why Algol-
60 was selected as a base for the new language. But the practical
orientation of ALGEM determined the deep modification of the ba-
sic language and introduction of serious alterations: new block nest-

ing mechanism, new variable types and also the special advanced
instruments for the work with the values densely packed in computer
memory cells.
Program structure is the same as in Algol: declarations followed

by operators in order of their execution. Variables are localized in
the block: begin end. The program can be only the block. Four vari-
able types are determined in ALGEM: integer, real, Boolean, string.
Values of numerical variables may be numbers, values of logical vari-
ables logic values and of string variables strings in contrast to Algol.
In ALGEM there is a possibility to describe the structure of

variables by means of declarator shape (in Russian vid). It points
the quantity and type of symbols contained in variable value:

integer P shape 9 (5) means that integer variable P has the length of
five decimal digits;
integer P shape 7 (3) P has the length of three octal digits;
integer P shape 1 (8) P has the length of eight binary digits;
string date shape 99 – L(10) – 9(4) means that string variable date
has the following structure two decimal digits, space, up to 10 letters,
space, four decimal digits (for example 21 September 2012).
In declaration of real variables you may point the sign of number

and exponent, location of decimal point and possibility of rounding.
These possibilities were introduces in the language because of ne-

cessity for programming the air defense tasks which demanded the
highest possible compact value package in memory cells.
Variables in ALGEM language may be simple and composite

(composite variables have not shape tag). Composite variable con-
tains other variables including composite as well and in fact it is a
record type.
Composite arrays are also provided in the language. They are

formed from composite variables of similar structure. Declaration
of composite value is always ended by symbol level. Thus, there is
the opportunity to work with arrays of records (i. e. tables). All these
means make it possible for ALGEM to solve specific economical
and management tasks of any level (they are also attributable to the
systems of real time, in particular to air defense systems).
There are also compound operators in the language except blocks.

It provides unlimited nesting of blocks and composite operators as
well. The operators are the same as in Algol: assignment operator,
go to operator, conditional jump, loop operator. Instead of procedure
operator it was introduced procedure-code operator (that is why there
is no declaration of procedures among list of declarations).
Not consider further details of the differences between two lan-

guages we only want to mention that ALGEM mainly was designed
for practical purposes of industrial programming while Algol is a
classical language for algorithms presenting.
ALGEM also included the best instruments of the functional pro-

gramming languages Lisp and IPL-V but it was the essential exten-
sion of these languages by addition of new list structures and proce-
dures for their processing. For example, Lisp functions provide the
processing of two adjacent elements of linear and chain lists. Kitov
introduced generalized list structures node lists and nested lists. For
the declaration of list variables it was introduced list declarator. To-
gether with the level symbol it forms the pair of parentheses. List
declarations begins with list symbol followed by declaration of list
header and then by list element structure. The list element may be
the list itself.
One more A. Kitov’s monograph “The programming of economi-

cal and management tasks” [2] was issued in 1970. Next year this
book was translated in German language [3] (covers of Kitov’s
four monographs about ALGEM language and it implementation are



shown on Fig. 4). New version of the language ALGEM-2 was pre-
sented in this book. This language was further development of AL-
GEM and was also oriented on the solving of economical and man-
agement tasks in information retrieval systems.

Figure 4. Anatoly Kitov’s books on ALGEM languag

ALGEM algorithmic language gained wide popularity and many
programs were written on it. For example, information retrieval
system “Setka-5” designed for searching the documents upon re-
quests was programmed on this language. This system was realized
on Minsk-22 computer and could process document arrays up to
120,000 items stored on 16 magnetic tapes. Search time in the ar-
ray of 10,000 items (i. e. on one magnetic tape) was 4-5 minutes.
In whole it may be said that ALGEM language was very suc-

cessful product oriented on industrial programming. It combined the
best features of procedure-oriented languages (Algol-60), languages
for complex data structures processing (COBOL) and list-processing
languages (Lisp, IPL-V). ALGEM realized principles of associative
programming developed by A. Kitov. In result ALGEM became one
of the most popular programming languages in USSR in 1970-s.
Later A. Kitov developed and introduced one more original pro-

gramming language NORMIN designed for solving the tasks in
medicine sphere but this is the theme of the separate investigation.
Today one can say that programming has not only osmotically in-

fused scientific and artistic research alike, but also that those new
contexts elucidate what it may mean to be an algorithm. This talk
will focus on the ‘impatient practices of experimental programming,
which can never wait till the end, and for which it is essential that the
modification of the program in some way integrates with its unfold-
ing in time. A contemporary example is live coding, which performs
programming (usually of sound and visuals) as a form of improvisa-
tion.
Early in the history of computer languages, there was already a

need felt for reprogramming processes at runtime. Nevertheless, this
idea was of limited influence, maybe because, with increasing com-
putational power, the fascination with interactive programs eclipsed
the desire for interactive programming. This may not be an accidental
omission, its reasons may also lie in a rather fundamental difficulty,
on which we will focus here.
In itself, the situation is almost obvious: not every part of the

program-as-description has an equivalent in the program-as-process.
Despite each computational process having a dynamic nature, an in-
tegration of programming into the program itself must in principle
remain incomplete. As a result, a programmer is forced to oscillate
between mutually exclusive perspectives. Arguably, this oscillation
reveals a specific internal contradiction within algorithms, a neces-
sary obstacle to semantic transparency. By calling this obstacle algo-
rithmic complementarity, I intend to open it up for a discussion in a
broader conceptual context, linking it with corresponding ideas from

philosophy and physics.
Here a few words about this terminology. Complementarity has

been an influential idea in conceptualising the relation between the
object of investigation, as opposed to the epistemic apparatus and the
history of practice. Originating in the psychology of William James,
where it referred to a subjective split of mutually exclusive observa-
tions, Niels Bohr used it to denote the existence of incommensurable
observables of a quantum system (position vs. momentum, time vs.
energy). Independent of the particular answer Bohr gave, comple-
mentarity raises the question of whether such a coexistence is in-
duced by the experimental system or already present in the subject
matter observed. Accordingly, in the case of programs, we may ask
whether this obstacle is essential to their nature or whether it is a
mere artefact of a specific formalisation. Algorithms, arguably sit-
uated between technical method and mathematical object, make an
interesting candidate for a reconsideration of this discourse.
The existence of an obstacle to semantic transparency within algo-

rithms and their respective programs need not mean a relative impov-
erishment of computation. Conversely, prediction is the wager and
vital tension in every experimental system, as well as in interactive
programming. After the conceptual discussion, I will try to exemplify
this claim by introducing a few examples in the recent history of live
coding. Again and again surfacing in form of symptoms such as an
impossibility of immediacy, I hope this practice will be conceivable
in terms of having algorithmic complementarity as one of its driving
forces.
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Algorhythmic Listening 1949-1962
Auditory Practices of Early Mainframe Computing

Miyazaki Shintaro 1

Abstract. It is still very unknown that besides the first visual in-
terfaces to early computers, such as the Williams-Kilburn Tube op-
erating for the first time in 1948 on the Manchester Small-Scale Ex-
perimental Machine (SSEM) or the many type-machine like printing
outputs of standard calculating machines, there were as well audi-
tory interfaces, which were build in as simple amplifier-loudspeaker
set-ups in to the circuits of the early mainframe computers. Exam-
ples of such machines were the famous UNIVAC-I, the TX-0 at
MIT, the CSIRAC in Australia and the Pilot ACE in England, but
as well later machines such as the Pegasus produced by Ferranti Ltd.
in Manchester and the PASCAL-Computer of Philips Electronics in
Eindhoven, Netherlands.

This paper is one of the first accounts of these auditory practices
of early mainframe computing. The term algorhythm as an intermin-
gling of algorithm with rhythm shall be proposed as an alternative
conceptual approach to decode the history of computing and pro-
gramming. Finally this paper will reflect on some epistemological
implications of such a historical practice for understanding some as-
pects of current computational cultures.

1 ALGORHYTHMICS AS METHOD

In an emerging discipline called software studies algorithms are de-
fined as abstract structures, which ”bear a crucial, if problematic,
relationship to material reality [10, 16].” Rhythm on the otherhand
can be defined as an elementary movement of matter, which oscil-
lates in-between the discrete and the continuous, hence between the
symbolic and the real, between digital and analog. Thus algorhythms
are generated by an inter-play, orchestration and synthesis of abstract
organisational, calculational respectively algorithmic concepts with
rhythmic real-world signals, which have measurable physical prop-
erties.

Although rhythm is not a technical term in the jargon of computa-
tional sciences, it denotes a semantic area, which forms the opposite
of terms such as clock, meter, measure or pulse. A clock seems to
be precise, but a rhythm is not. In music theory, rhythms are usu-
ally defined in relation to meter, which provides a more symbolic
framework within a rhythm is acting. This concept of a symbolic and
ideal structure, which provides a frame work for real and fluctuating
physical effects, such as sound or vibration is analogous to that of
John von Neumann, when he described the characteristics of digital
signals. Digital machines work correct

as long as the operation of each component produces only fluc-
tuations within its preassigned tolerance limits [...] [19, 294]

1 Berlin, Germany, email: miyazaki.shintaro@gmail.com

The rhythm of a piece of music is correct as long as it works within
the preassigned symbolic and ideal tolerance limits of human percep-
tion. This is the case as well with digital machines and it legitimizes
the usage of the term rhythm for describing computational processes.

An exception of the non-use of rhythm as a term in the techni-
cal jargon of computing seems to be the british community of early
mainframe computing. Frederic C. Williams and Tom Kilburn used
the term rhythm extensively in a paper, which presented the Manch-
ester Mark I [20]. This tradition was continued as well in the tech-
nical jargon used in the manual of the Ferranti Pegasus Computers
[1]. Nevertheless, the usage of the term pattern had for some reason
a greater impact and it was used world wide, but when it comes to
the task of indicating both the abstract and material – or to be pre-
cise signal-based – aspects of computing and programming, then the
amalgamation of algorithm with rhythm into algorhythm might be
the best description as it will be shown in the following.

2 AMPLIFIER-LOUDSPEAKER SETUPS
In 1990 at the so called UNIVAC-Conference organized by the
Charles Babbage Institute of the University of Minnesota, Louis D.
Wilson, one of the main engineers of the BINAC and the UNIVAC-I
remembers how his method of technical listening evolved around the
year 1949 as a practical procedure to get some idea of the computa-
tion and operational processing happening in the circuits of the main-
frame computers:

When we were testing BINAC out, we were working two shifts
and we worked all night long, and we had a radio going. Af-
ter a while we noticed that you could recognize the pattern of
what was happening at the moment by listening to the static on
the radio. So I installed a detector in the console and an ampli-
fier and a speaker so that you could deliberately listen to these
things [4, 72].

Auscultating and tapping into the circuits of early mainframe com-
puters was very common around the world and the methods of simply
attaching an amplifier-loudspeaker system to relevant data channels
evolved at different places independently.2 These set-ups were used
for specific listening methods for real time monitoring of computa-
tional processes or as sonic indicators for hardware malfunctions.

The UNIVAC-I released in 1951, was one of the first commercially
produced mainframe computers. First customers were the United
States Census Bureau, the US Air Force or the Columbia Broadcast-
ing System (CBS). The 1958 Univac-1 Maintenance Manual indi-
cates:
2 It is still possible to do this kind of tapping with current digital gadgets such

as laptops, netbooks and iPads by using portable AM-radio players.



[T]he contents on the highspeed bus are constantly detected and
supplied as an audio signal [3, 22-Ch.2].

In the case of the many Pegasus computers produced by Ferranti Ltd.
in Manchester from the late 1950s, on the source of the auditory dis-
play (see [13, 24]) was variable. It was called a ,,flying noise probe”
as described in [2, Fig. 17.1] and [1, 175]. Christopher P. Burton
(*1932), who worked as an engineer of the Ferranti Pegasus Com-
puters and is known for rebuilding the First Manchester Computer
(Manchester Small Scale Experimental Machine) in 1998 [6] remem-
bers:

[O]n Pegasus, the test programs are permanently stored on an
isolated part of the magnetic drum, so a few simple manipula-
tions of the control switches could call whatever test program
was currently of interest. A working program had it’s charac-
teristic sound (by chance, depending where the noise probe was
connected) and the sound just changed when a fault was de-
tected [7].

Individual flip-flops in different registers, different data bus nodes
or other passages of data traffic could become sources for auditory
monitoring. Not only a passive listening of processes of computation
was very common, but as well an active exploration of the machine,
while listening to its rhythms.

Very common were contact failures where a plug-in package
connector to the ’backplane’ had a poor connection. These
would be detected by running the ’test program’ set to con-
tinue running despite failures (not always possible, of course),
and then listening to the rhythmic sound while going round the
machine tapping the hardware with the fingers or with a tool,
waiting for the vibration to cause the fault and thus change the
rhythm of the ’tune’ [7].

Algorhythmic listening served as an auxiliary method to get informa-
tion about the inner workings of a mainframe computer. One might
assume that it was put into practice as an indirect solution to the
calmness of the machines operating on vacuum tubes in comparison
to earlier machines, which operated with sounding and clicking relay
switches, but this is still to be verified.

3 RECONSTRUCTING A HISTORICAL
ALGORHYTHM

Audio recordings of algorhythmic listening practices are rare, but
not impossible to find. One such recording was made by engineers
of the PASCAL-Computer by Philips in Eindhoven in the early
1960s (see [14] and [15]). By analyzing the audio material and by a
close-reading of the scientific explanations written by the PASCAL-
engineers the following in-depth analysis would explain how the
sounds were created and how they relate to the computation pro-
cesses and the specific algorithm, which was responsible for the
sounds, thus it will specify the reason to call such an listening method
an algorhythmic practice.

The area within the electronic circuit of the PASCAL, where
some key operations of the algorithm were transformed into audi-
ble sounds, noises, rhythms and melodies was the last flip-flop of
shift-register S. The electronic signals at this passage got ampli-
fied by a simple loudspeaker-amplifier set-up and transformed into
mechanical movements of the loudspeaker’s membrane, which pro-
duced sound.

Figure 1. Flow chart of algorithm used in the search for prime number as
represented in [15, Fig. 3.].

It is known that calculating whether an integer is a prime numbers
or not has always been a benchmark in the history of computing. This
was as well the case in the context of the PASCAL-Computer and
therefore it had a demo-programm implemented that should show
how fast it is able to calculate prime numbers. As you can see on fig.
1 finding out if a number is a prime number or not, is merely a matter
of division, comparison, counting, shifting and adding. A concrete
example will exemplify the algorithm. The number to find out if it is
a prime number shall be 443. As defined by the algorithm the divisor
p is 3. The value 443, which is stored in G gets transferred to shift-
register S. This is done by step 1. Step 2 is performing the division.
The first quotient q would then be 147. 3 times 147 is 441. 443 minus
441 is 2, which is the remainder. In step 3 we check, if the remainder
is zero and go to step 4 if no. Here we check if p, which is 3, is bigger
than q, which is 147. The answer is no, so we go on to step 5, add
the number 2 to p and go back to step 1. P is now 5 and after the
division the quotient q is 88. In the following we would loop step 1
to 5 altogether additional 9 times, until the divisor p gets bigger than
the quotient q and until we could prove that 443 is a prime number.
The series of quotients created is stored in shift-register S. In the
present case it would consists of the numbers 88, 63, 49, 40, 34, 29,
26, 23, 21, 19. If you look only at whether the numbers are odd or
even you can see that there is some rhythm of change between the
two properties, such as E, O, O, E, E, O, E, O, O, O, while E stands
for even and O for odd.

Fig. 2 represents the electronic signal and changes of potential,
which is measurable at the last flip-flop of shift-register S during one
iteration of the above described algorithm for finding out if a number
is a prime number or not. A LOW or almost no signal represents a
symbolic 0 in shift-register S and at the same time it means that there
is an even number stored in it. This is represented by the waveform
a at the top of the diagram. And as you can see from waveform b
at the bottom, if you have a 1, then you have a HIGH, which means
an odd number. This number is the quotient q and thus an impor-



Figure 2. Electronic signals as represented in [15, Fig. 4.].

tant intermediate result of Step 2 as shown on fig 1. As mentioned
earlier, during the computation process the algorithm will produce a
variety of different rhythms concerning the pattern of even and odd
numbers, thus it will produce different series of waveform a and b in
many variations, while the basic cycle of 180 µs is kept. Therefore a
5.55 kHz tone is audible through-out the whole calculation process.
At the same time a sonic process, which could be described as a
howling is audible. At the beginning of each calculation the howling
is too fast to be audible. It produces some white noise, but then gets
continuously slower, until you can hear the up and down of the fre-
quency very clearly. This happens especially with very big numbers,
because the bigger the number, the longer the series of quotients and
the more regular the rhythm of changes between odd and even num-
bers [15, 174]. The howling is created by a process called frequency
modulation, which can be understand as the coupling of two oscil-
lators. In this manner many different frequencies can be produced.
And since the change of rhythms in the alternation of odd and even-
quotients happens stepwise, the algorithm produces the specific kind
of howling, which is audible on the vinyl recording from 1962 made
by the engineers of Philips.

4 POPULARIZATION OF ALGORITHMIC
THINKING

Before reflecting the disappearance of the described listening prac-
tices, the notion of algorithm itself shall be shortly inquired.

An algorithm is the combination of logic and control as it was de-
fined in the 1970s [12], furthermore, an algorithm formulated in a
programming language is not the same as a list of algebraic formu-
las. Mathematicians of the 20th c. like Alonzo Church (1903–1995)
or Stephen C. Kleene (1909–1994) already used the term algorithm
in the 1930s and 40s, whereas Alan Turing (1912–54) or Kurt Goedel
(1906–1978) used it scarcely. With the dawn of higher level program-
ming languages such as Algol 58, Algol 60 and all the other Algol
inspired languages in the early 1960s the notion of algorithmic no-
tation spread through out the academic world of scientific computa-
tion. Algol is the abbreviation for ALGOrithmic Language. It was
the result of a pan-atlantic collaboration between many different pro-
gramming pioneers and mathematicians such as Friedrich L. Bauer
(*1924), Hermann Bottenbruch, Heinz Rutishauser (1918–1970) and
Klaus Samelson (1918–1980), who were members of the European
group and John W. Backus (1924–2007), Charles Katz, Alan J. Perlis
(1922–1990) and Joseph H. Wegstein from the US. For creating the

Algol 60 language later on John McCarthy (1927–2011) and Peter
Naur (*1928) joined the team.

In the proposal from the North American side Algol 58 should
have been named International Algebraic Language, which distinctly
marked the lack of conceptual clarity concerning the differences be-
tween the meaning of algorithmic and algebraic in the mindset of the
Americans. The Europeans must have protested vehemently against
the idea of calling their new language algebraic, since the term al-
gorithm was better established in the emerging community of scien-
tific calculation. Already 1955 there was a Pan-European conference
in Darmstadt, Germany, where pioneers such as Herman H. Golds-
tine (1913–2004), Andrew D. Booth (1918–2009), Howard H. Aiken
(1900–1973), Konrad Zuse (1910–1995), Friedrich L. Bauer (*1924)
and Edsger W. Dijkstra (1930–2002) presented their work. It was at
this conference, where Rutishauser presented for the first time his
concept of an algorithmic notation system to a broader audience.
Thereby he clearly distinguished it from algebraic notation systems.

The equal sign is substituted by the so called results-in sign
), which demands, that the left values shall be calculated as
declared into a new value and shall be named as declared on
the right side (in contrast to a + b = c, which in sense of the
algorithmic notation would merely be a statement) [16, 28].

Donald E. Knuth (*1938) himself a pioneer in algorithmic think-
ing of a slightly younger generation and as well a software historian
wrote:

[M]athematicians had never used such an operator before; in
fact, the systematic use of assignments constitutes a distinct
break between computer-science thinking and mathematical
thinking [11, 206].

It can be argued that this important shift in the mode of understanding
was induced by the machinic reality of computers and their bound-
edness to time based processes. To convince the Americans by the
theoretical importance of this distinction must have been one of the
aims of the European fraction. But this change seemed to be quite dif-
ficult. John Backus didn’t change his vocabulary even after the first
meeting of 1958 in Zurich, Switzerland. In a 1959 document called
The syntax and semantics of the proposed international algebraic
language of the Zurich ACM-GAMM Conference [5] he still wrote
algebraic and never used algorithmic. Only the fast dissemination of
Algol 60 especially in the emerging computer science departments
in Europe helped to establish the new way of algorithmic thinking.

5 DISAPPEARANCE OF THE LOUDSPEAKERS
The method of listening to algorithms disappeared around the same
time in the early 1960s, when the term algorithm started to get estab-
lished as a proper term of the then emerging computer sciences. In
this sense, nobody got the idea to speak about algorhythmic listening,
since it went forgotten very soon and the intermingling of algorithm
with audible rhythm was not possible any more.

In fact, the decay of algorhythmic listening as an auditory engi-
neering practice was closely related to the emergence of software in
general. The amplifier-loudspeaker setups disappeared because the
up to that time mostly human operators were replaced by software
based operating systems. John W. Tukey (1915–2000) wrote in 1958:

Today the ’software’ comprising the carefully planned interpre-
tive routines, compilers, and other aspects of automative pro-
gramming are at least as important to the modern electronic



calculator as its ’hardware’ of tubes, transistors, wires, tapes
and the like [18, 2].

With the emergence of the compatible time-sharing system (CTSS)
developed at MIT in the early 1960s and other operating systems, the
mainframe computers could listen to themselves. The routine of er-
ror detection and process monitoring, which was previously already
automatized, but partly still done by ear, got entirely implemented
into the functionality of the operating system.

The supervisor program remains in A-core at all times when
CTSS is in operation. Its functions include: [...] [M]onitoring
of all input and output from the disk, as well as input and out-
put performed by the background system; and performing the
general role of monitor for all foreground jobs [8, 8].

Altough error detection and diagnostics was a feature, which was
already in use in earlier machines such as the relay computers in the
Bell Laboratories [17, 39], it gained a new momentum with operating
systems such as the CTSS. At the end of the decade and the success
of higher-level programming languages, nobody was listening to the
rhythm, noise and melodies of the data signals, but reading the signs
and alphanumerical symbols on their screens. To put it provocatively:
computerlinguistics won over computerrhythmics.

The digital computer is a symbolic machine that computes
syntactical language and processes alphanumerical symbols; it
treats all data [...] as textual, that is, as chunks of coded sym-
bols. [9, 171].

Programming was always an abstract way of thinking. The better
the interfacing between human and machine language was working,
the easier the programmers could concentrate on the core matter and
forget about the physics, signals and algorhythmics of computing. In
fact the black-boxing of the operator was one of the key improve-
ments, which leaded to the dawn of software cultures.

6 CONCLUSIONS

Despite the disappearance of algorhythmics as an engineering prac-
tice this paper has shown that it is a legimate, alternative method
to decode historical aspects of computing and programming. Simi-
lar micro-analytical case studies could be done with the history of
phreaking or the history of the term ping and its usage in network
debugging.

As it has been briefly shown, algorhythmics as a method of his-
torical and critical inquiry, which takes the notion of a program as
a logico-mathematical-physical structure seriously and emphasizes
both the signal-based and machinic aspects of programming and the
importance of abstract, logical and mathematical concepts, is able to
create new de- and reconstructions of the history of programming.
Furthermore it could be applied as a method, which is not only a the-
ory, but has practical implications for the area of data asthetics and
information aestheticization. For doing that not only visual, but as
well sonic aspects must be considered.
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Logic and Computing in France: A Late Convergence

Pierre Mounier-Kuhn

1

How did mathematical logic interact with computing in the pio-
neer era? Was the “Turing machine”, to sum up a common model, a
decisive source of inspiration for electronic computers designers? I
tend to consider this model as a founding myth of theoretical com-
puter science, an a posteriori reconstruction, more than an accurate
historical account. Based on archival research and oral history inter-
views, a detailed investigation on the case of France – a mid-size
country where computers appeared years later than in Britain and in
the USA – suggests rather a late encounter than a filiation process.2

Of course we must distinguish between several branches of mathe-
matical logic. Boolean algebra was taught and used as soon as the
first digital calculators were developed in French companies and lab-
oratories, in 1950. It went differently with the theories of computabil-
ity and recursive functions which had “revolutionized” mathematical
logic in the 1930s, but were ignored in France until the mid-1950s,
and did not seem to interact with computing until the early 1960s.
Computing in the 1950s emerged in a few French universities as an
ancillary technique of applied mathematics, mainly numerical anal-
ysis, to answer the needs of electrical engineering, fluid mechan-
ics and aeronautics [16]. In the science faculties of Grenoble and
Toulouse, then of Lille and Nancy, at the CNRS’ Institut Blaise Pas-
cal in Paris, small teams of applied mathematicians and electronic
engineers struggled to get unreliable vacuum tube calculators to pro-
cess algorithms written in binary code or assembler: Their concerns
were very remote from the high abstractions of mathematical logic.
Besides logic had been eclipsed from the French mathematical scene
since Jacques Herbrand’s premature death in 1931. Moreover, it was
banned from mathematics by the Bourbaki group, for reasons which
will be explained in the paper, and rejected toward philosophy [14].
In the “desert of French logic”, to quote a contemporary, only a cou-
ple, Jean-Louis Destouches and Paulette Février, worked on the log-
ical foundations of physics [9, 1]. Février also published translations
of foreign logicians, in a collection of books she directed at a Paris
publishing house, and organized a series of international confer-
ences: Applications scientifiques de la logique mathématique (1952)
[7], Les Méthodes formelles en axiomatique (logique mathématique),
Le Raisonnement en Mathématiques (1955), etc.
Only two mentions of the Turing machine appeared in France in the
first half of the 1950s. In January 1951, at the CNRS international
conference on calculating, a delegate from the British National Phys-
ical Laboratory, F. M. Colebrook, introduced his presentation of the
ACE computer by mentioning Turing’s paper of 1936 – “a most ab-
stract study which was in no regard a preview of modern automatic
digital calculators”, yet attracted the interest of the NPL director [4].
This mention arose no visible echo in the 600 pages of the confer-
ence proceedings, nor in the memory of the participants. More im-

1 CNRS & Université Paris-Sorbonne Associate Researcher, Centre Alexan-
dre Koyré-CRHST, email: mounier@msh-paris.fr.

2 This research stems out of questions addressed in my book [15].

portant perhaps, at the end of the same year, the Bourbaki seminar
invited German-French-Israeli logician Dov Tamari to speak about
“Machines logiques et problèmes de mots” [19].3 Tamari described
the Turing machine, remarking that the term was misleading, it was
essentially logical schemes representing a simplified “ideal calcu-
lating man”. It belonged to pure mathematics and offered a new per-
spective on algorithms. Yet Tamari noticed that Turing’s theory might
have a “possible application in the field of calculating machines”. In
short, these two glimpses of the Turing machine were very far from
presenting it assertively as the model for modern computers.

The mid-1950s: A revival of mathematical logic

Mathematical logic started a revival in 1955, when Bourbakist Henri
Cartan invited the Austrian-American Georg Kreisel to teach in Paris.
Simultaneously, three French doctoral students – two mathemati-
cians, Daniel Lacombe and Jean Porte, and a philosopher, Louis No-
lin – dared to embrace this marginal matter. Let us introduce two of
them to have a glimpse at their trajectories.

Daniel Lacombe (Ecole Normale Supérieure 1945) initially stud-
ied number theory and other mathematical themes well established
in the French school. In 1955 he started to publish brief texts on re-
cursivity [11], likely under the influence of Kreisel with whom he
co-signed two papers. In 1960 he presented a complete overview on
“La théorie des fonctions récursives et ses applications” (75 pages),
reviewing Gödel’s, Church’s and Herbrand’s theorems, Turing’s ma-
chine, Kleene’s works, etc. The only French author he quoted was
Jean Porte, which seems to confirm that there was no other. The in-
troduction stressed that the theory of recursive functions was “à la
base de la majorité des résultats intéressants obtenus en Logique
mathématique au cours des trente dernières années”, in other words
a paradigm in this branch of mathematics. This considerable arti-
cle also mentioned briefly that this theory was useful for the formal
representation of electronic calculators, which in turn stimulated re-
flexions on the old, intuitive concept of calculation. Lacombe was
not seeking to “sell” this theory to computer specialists, however the
fact that he exposed it in the Bulletin de la Société Mathématique de
France allowed to touch numerical analysts as well as pure mathe-
maticians [12].
Jean Porte studied logic within philosophy, in which he graduated
in 1941. Then he took mathematics while participating in the un-
derground resistance in the Toulouse region. In 1949 he joined the
French statistics institute (INSEE) where he invented the catégories
socio-professionnelles, for the 1954 census – an essentially empir-
ical work. Meanwhile Porte began research in mathematical logic
and presented a paper on modal logic at a 1955 conference on Rea-
soning in Mathematics [18]. This conference marked a renaissance

3 Dov Tamari (1911-2006), born Bernhard Teitler, had prepared his doctorate
in Paris in the 1930s.



of mathematical logic in France, particularly as the French admit-
ted that logic problems could be expressed in algebraic form and
that mathematicians were interested. In 1956 Porte proposed “A sim-
plification of Turing’s theory” at the first international Cybernetic
conference in Namur (Belgium) [8]. This paper reveals that at least
one Frenchman had read the major works by Church, Curry, Gödel,
Kleene, Post, Robinson, Rosenblum and Turing on computability,
lambda-calculus and recursive functions theory. It is also interesting
as Porte was adressing a Cybernétique audience, which still included
specialists of computers (who would soon keep cybernetics at bay
as a set of vague speculations). Yet Porte’s conclusion mentioned no
practical implication, even indirectly, of these theories, which might
concern them. On the contrary he suggested to “reach an even higher
level of abstraction than Turing’s machines”. If he talked to cyber-
neticians, it was from the balcony of the logicians’ ivory tower.
In 1958 he received a CNRS researcher position, at the Institut Blaise
Pascal in Paris, where another philosopher turned logician, Louis
Nolin, had just been appointed to manage the computer pool. Porte
and Nolin soon began writing programs for the Elliott 402 and IBM
650 computers of the institute. This was the first recorded interaction
of logicians with electronic computers in France. Yet we don’t have
clues about the relationship they possibly established between their
research in logic and their practice as programmers. Even if they did,
they remained exceptions for several years. Computer experts were
struggling with vacuum tube circuit and magnetic drum problems,
or focused on developing numerical analysis, so that computability
theories made little sense to them.

The 1960s: A convergence with computer science

Things changed in the early 1960s, when a series of events mani-
fested a convergence between logic and the nascent computer sci-
ence.
In October 1961, IBM’s European education center at Blaricum
(Netherlands) hosted a meeting on the Relationship Between Non-
numerical Programming and the Theory of Formal Systems.4 Sev-
eral French computer scientists and logicians participated, including
a co-organizer of the meeting, Paul Braffort. Among the speakers,
they heard Noam Chomsky and Marcel-Paul Schtzenberger lecture
on “The algebraic theory of context-free languages”, and John Mc-
Carthy present his vigorous manifesto, “A Basis for a Mathematical
Theory of Computation”, which proclaimed the foundation of a new
science of computation based on numerical analysis, recursive func-
tion theory and automata theory.
In June 1962, a mathematics conference hold at the science faculty
of Clermont-Ferrand included sessions on computing and on logic,
the latter being represented by a constellation of international stars
– Tarski, Beth, Bernays, Rabin, etc. In his keynote address, Renè de
Possel, the head of the Paris computing institute, Institut Blaise Pas-
cal, explained that mathematical logic, hitherto a field of pure specu-
lation, had become useful to mathematics in general and to informa-
tion processing in particular.5 De Possel stressed that Von Neumann,
“the first promoter of electronic computers”, was also a logician; and
that, at a humbler level, programmers proved more efficient when

4 The proceedings were published two years later with an even more explicit
title [2]

5 The conference was divided in four sessions covering Pascal’s domains:
Logic, Numerical analysis and automatic computing, Probabilities, Differ-
ential geometry and mathematical physics. The proceedings were published
in Annales de la Faculté des sciences de l’Université de Clermont, Série
Mathématiques, 1962, vol.7-8.

they knew some logic – “to my great astonishment”, De Possel con-
fessed. With Von Neumann, Turing and others emerged a general
theory of machines, which interests computer designers as well as
users. It appears in several new application fields. While attempts to
make machines reason are still embryonic, actual work on machine
translation, automatic documentation, artificial languages and their
compilation, reveal problems resorting to mathematical logic and lin-
guistics. “To the point that special courses in logic should be created
for this purpose”.
At the second IFIP congress (Munich, August 1962), a session was
devoted to “Progress in the logical foundations of information pro-
cessing” – a topic not adressed at the first IFIP congress in Paris
(1959). John McCarthy hammered again the gospel he was preaching
at Blaricum a year before; and an engineer from Siemens, Heinz Gu-
min, explained why computer designers needed mathematical logic
[10]. Among the French delegation (nearly 10 of the audience), at
least a few listeners got the message.
Actually the message was already being spread in the French com-
puting community through its learned society AFCAL. In late 1961
at the AFCAL seminar on symbolic languages, Louis Nolin, who
had attended the Blaricum meeting, gave a programmatic lecture.
He recommanded to design computer languages according to the ax-
iomatic method established in mathematics – Algol being exemplary
of this approach. In order to build an algorithm, it was useful to deter-
mine first if the function was effectively computable. For this, com-
puter scientists would be well advised to learn about the solutions
elaborated 30 years ago by logicians.6

Louis Nolin had become De Possel’s assistant and chief program-
mer at Institut Blaise Pascal, thus he was in a good position to trans-
late words into action. In the autumn of 1962, regular courses on the
theories of computability and recursive functions were introduced
in the computer science curriculum in Paris at graduate level. A
seminar was organized by J.-L. Destouches, assisted by Jean Porte,
Daniel Lacombe and a third logician, Roland Fraı̈ssé. The same
started teaching “logic for programmers” at graduate level. Mean-
while, Paulette Février published a translation of A. Grzegorczyk’s
classic treaty on recursive functions, and created within the Institut
Blaise Pascal a collection of brochures explicitely titled “Logic for
the calculator’s use”: Reprints of journal articles, seminar and course
texts, doctoral dissertations in logic, were thus made available be-
yond the tiny circle of French logicians.

From 1963, logic was firmly established in the computer science
curriculum at the University of Paris’ Institut de Programmation. Be-
side its intellectual interest for programmers that Nolin and others
were outlining, the adoption of logic had an institutional motivation:
Computing teachers needed to set up course programs with more
formal matters than Fortran training or the physical description of
machines, and logic responded perfectly to this quest. Three years
later, the Ministry of National Education defined a new, nationwide
masters diploma, Maı̂trise d’informatique, including a certificate of
“Algebra, mathematical logic, compiler and system theory” [13].
Other universities followed progressively. Grenoble was practically
in phase with Paris, although at a smaller scale, as logic was taught by
an astronomer turned linguist, Bernard Vauquois, who headed a labo-
ratory for machine translation and was an early member of the Algol
committee. The cross-fertilization between various scientific fields in
the mid-1960s in Grenoble is well exemplified by the prehistory of
the Prolog language, as told by one of its participants[3]: The syn-

6 The paper [17] gave a few major references: Gödel’s definition (1934), its
use by Kleene (1952), Martin Davis’ treaty on Computability and Insolv-
ability (1958), and Daniel Lacombe’s [12].



ergy between two projects – Algol compiling and natural language
processing – led young researchers to absorb a wealth of recent inter-
national publications on syntax analysis, W-grammars, graph theory,
recursive functions and lambda-calculus. This boiling exploration of
new avenues geared itself with another soaring movement, artificial
intelligence and automatic demonstration, and later led to Prolog and
to a novel conception of algorithmics, directly based on mathemati-
cal logic [5].
Later came Nancy, Clermont and other faculties where computing
science remained firmly rooted in mathematics.
Boosted by this interaction with an expanding new discipline, mathe-
matical logic flourished again in French universities at the end of the
decade. Reciprocally, the alliance between logicians and computer
practitioners was a decisive factor in the assertion of computing as a
new science.
Was the case of France exceptional, or representative of a general
process? Evidently the case of France may differ from the case of
more advanced countries in the post-war period, and we must attempt
a comparison.7 Still it offers a striking counter-model.
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l’Université Paris-Sorbonne, 2010.

7 See for instance the in-depth study conducted by Karel Van Oudheusden,
Turing’s 1936 Paper and the Origin of Computer Programming – as Experi-
enced by E.W. Dijkstra, and [20] and Edgar G. Daylight (an author closely
related to the former) [6].

[16] Pierre Mounier-Kuhn, ‘Computer science in French universities: Early
entrants and latecomers’, Information & Culture: A Journal of History,
47(4), (2012).
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Is Plugged Programmed an Oxymoron?
Allan Olley1

Among the key “special purpose” calculating technologies in the
1930s were the punched card machines. These machines were used
by business and scientists in performing various calculations both
before and after the creation of the first computers. Many computer
pioneers were familiar with the technology and used them before or
alongside full electronic digital computers. [2] Such machines were
the mainstay of IBM’s business before and even for some time after
the invention of the computer. In this paper I will address in what
ways the control and orchestration of machine calculation on these
machines is analogous with modern programming. I will also suggest
some of the implications for the modern paradigm of programming
suggested by the contrast with this earlier system.

The punched card system consisted of cards that encoded num-
bers and machines that performed functions on the cards. In general
each machine performed only one kind of operation such as addition
(tabulation), multiplication, sorting, or copying. Results of calcula-
tions could simply be displayed on a counter, printed in paper and
ink or punched onto other cards. A calculation would often involve
passing stacks of cards between two or three machines. These ma-
chines included a complex control mechanism that involved the set-
ting of various switches, the plugging of wires to specify where on
the cards numbers would be read from and to set-up for functions
such as clearing a total, printing sub-totals and so on. These control
functions were actuated by indications on the card. The indication
was usually either a special punch or the detection of a difference be-
tween subsequent cards. [5] Usually, each specific sort of calculation
done on these machines would require a specific set-up.

The capacity of these machines is best illustrated with some ex-
amples. In 1928 L. J. Comrie carried out a harmonic synthesis to
calculate the positions of the Moon for a ten year period for the
British Navy’s navigational and astronomical tables. The calculation
involved adding hundred of trigonometric terms at regular intervals.
The key to executing the calculation was to punch the values of the
various trigonometric series on sets of cards at appropriate intervals,
each function was now embodied as a stack of cards. An element of
the position could then be calculated by simply assembling an appro-
priate set of stacks (functions) and taking the appropriate card from
each stack and feeding them into a tabulator that added the value on
each card. The drawback was that Comrie’s team needed to prepare
over half a million cards. Despite the monumental amount of prepa-
ration required Comrie felt that the use of the machines had led to a
reductions in time, error and cost. He made partial preparation to use
the system to calculate the position of the Moon to the year 2000. [3]

Comrie’s success illustrates the power of the machine and one of
the key elements in performing more technically demanding com-
putations, the need for cards with prepared functions on them. In
this case a punched card table added the calculation of trigonometric
terms to the repertoire of a machine that had formerly only added
1 Independent Scholar, email: allan.olley@utoronto.ca

numbers. Printed mathematical tables for hand calculation methods
had been the source for the values used in the computation.

The importance of the cards also suggests that the cards were not
merely an inert storage system. The cards themselves were part of
the data processing of the machines. This is not just due to the fact
that a stack of cards is a serial storage mechanism. For example the
sorter physically separates the cards into ten piles, running the card
through the machine was coextensive with the machine’s operation.
The sorter performed its work at a faster rate than any other punched
card machine, as a result, 20 000 cards an hour. More generally the
comparison of successive cards was key to the control mechanism of
punched card machines. This comparison was achieved by running
cards through a set of comparison brushes simultaneously with the
previous card running through the main brushes. The card pass was
the unit of operation in the punched card machines and constrained
the number of operations performed or initiated. Again the passive of
the card through different parts of the machine was a key part of the
machines operation.[5] The card served not only a storage but also a
control function.

Even a well prepared set of cards could not compensate for the
need to set-up the machine to calculate according to a different for-
mat. Problems such as numerical integration where each step relies
on the previous step pose a special problem. The various steps re-
quired in one iteration required different calculations and therefore
different machine set-ups. If only a single integration was being per-
formed this would mean rewiring the machines after each card pass.

Wallace J. Eckert was a professeur at Columbia University in New
York and had worked on using an experimental punched card ma-
chine for parts of his numerical integration of asteroid orbits in the
early 1930s. He went on to propose to IBM the construction of a
device called the Calculation Control Switch that was completed in
about 1935. This device used a set of discs notched discs, relays and
switches to rewire and toggle various elements of a tabulating ma-
chine, multiplier and an associated unit. Essentially it allowed the
machines to perform 12 prearranged steps. This allowed the operator
to perform the various different additions, multiplications and card
punches by feeding the cards through the machine, making some an-
cillary calculations and sometimes pressing a button on the Control
Switch (it proceeded automatically in some cases). [5]

In other cases Eckert took advantage of the speed with which
punched card machines could perform the same operations. Faced
with performing a large number of common additions and subtrac-
tions, he simply sorted the like cases and copied the correct answers.
[5]

Another way to make the punched card machines more flexible
was to increase the number of operations that could be performed
during a single card pass. A standard IBM tabulator of the 1930s
could add five numbers to five separate counters in a single pass and
also reset the a counter to zero or print output if prompted. The IBM



601 Multiplier could also perform two additions or subtractions on
the product it calculated. [5] The German DEHOMAG 11 tabulator
took this option even further it could carry out five additions or sub-
tractions and a multiplication in any order on a card pass. [6] While
this allowed a more complex sequence to be carried out, the same
sort of calculation would be carried out on each card pass.

Also, unless performed in parallel more calculations would slow
the rate of card reading. As faster electromechanical and electronic
technology was deployed in calculating machines during and after
World War II punched card machines were created that carried out
more steps during a single card pass. The IBM Pluggable Sequence
Relay calculator built in 1944 for the Aberdeen proving grounds bal-
listic work could perform 48 steps that were equivalent to as many
as 24 additions or 4 multiplications per card pass. This calculator
processed at a maximum of one hundred cards a minute and could
perform various operations in parallel.[4]

This technological lineage would reach its ultimate form in the
IBM Card-Programmed Electronic Calculator (CPC), released in
1949, which combined an electronic multiplier and various other ma-
chines to create a machine capable of carrying out almost any arith-
metic sequence as specified by the stack of cards read into it. The
CPC still had plugboard based control, but a single setting of the
plugboard would allow for a wide range of calculations. The CPC
would be the last major “plugged program” machine and the stored-
program machine would dominate machine design afterwards. In one
case IBM rejected a plan for a new electronic plugged programm ma-
chine in favour of a stored-program alternative, explaining that set-up
and operation required far more skill and attention than even though
it might also yield superior results in the right hands. [1]

The similarity between plugged punched card machines and pro-
grammed computers is that as with a stored-program computer this
automation required breaking a problem into a series of steps and ar-
ranging for their execution by machine. Both allowed the automatic
execution of a plan. However, in punched card machines there was no
clear separation between data entry and instructions. The sequence of
cards and the machine set-up combined to determine the kind of com-
putation performed. Therefore while the operation of the machine
was abstracted into mathematical terms and into engineering instruc-
tions for wiring the machine and setting switches to carry out each
step, problems were not described in terms of a full set of generic
steps in a specific order, like lines of instruction code (a program).
Different problems were not given a formal similarity.

The contrast between the control of punched card machines
and modern programming techniques suggests how the notion of
a program abstracts from the particular physicality of a machine.
Those who design basic computer architecture, program machine
code must worry about these issues and understand and work
with the exact limits of the machine, but most computer users and
programmers do not work at this level. Abstraction is a powerful
tool for allowing techniques to be shared between people and
computers. However, lack of attention to the particulars of a machine
makes optimizing operation for a problem difficult. One example
is the common use of parallel computations in plugged machines
compared with the difficulties associated with parallel computing in
the stored program context.
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On the Nature of the Relation between Algorithms and 

Programs

Uri Pincas1

Abstract.  'Algorithm' and 'Computer-Program' are two of the 

very  fundamental  terms  of  computer-science  and 

programming.  Here we try  to  clarify  the nature  of  relation 

between these two terms and shade some light on the issue. 

By first looking with a one-directional scheme of "theoretical" 

and "practical" perspective, we can consider some relatively 

simple relation between algorithms and computer-programs; 

but  a  deeper  and  broader  examination  of  the  dynamic 

interconnections between  the  two may lead  us  to  view the 

matter as more complicated.

1 ALGORITHMS

The  notion  of  algorithms  lies  at  the  essential  core  of 

computer-science. An algorithm, in some general basic (rather 

loose  and  primitive)  sense,  is  an  instruction  for  doing 

something  by  simple  actions  according  to  some systematic 

manner.  In  this  sense,  a  casserole-recipe  or  directions  of 

getting from one town to another  are  algorithms.  However, 

here we are interested in algorithms in the more computational 

definite sense, as the term is used and discussed in computer-

science contexts.1 

It  is  interesting  to  notice  that  though the  notion  is  very 

central and has been (being) discussed and elaborated on for 

quite  many years,  there  is  currently  no  absolute  consensus 

about the exact definition (and exact meaning) of 'Algorithm', 

and the attempts to define this term pose rather intricate issues 

in still ongoing debates (see, for example, [21], [14]). 

But  let  us  accept  here  some  "common-sense" 

characterization  of  the  term,  somewhat  similar  to  the  one 

mentioned above, but more accurate and "computer-scientific" 

(though  applies  to  broader  realms  than  strict  computer-

science):  By 'Algorithm' we refer to a general prescription for 

performing  some  definite  ("computational")  task;  i.e.  a 

description of operational steps, each of which is well-defined 

by  itself,  which  are  to  lead  to  some  result,  if  executed 

according to some unambiguous order (see, for example, [15], 

chapter 1). 

2 COMPUTER-PROGRAMS 

A large and significant part of computing is, in a very natural 

way,  computer-programming;  that  is  to  say—the designing, 

writing,  improving,  running,  maintaining  and  analysing  of 

computer-programs.  Computer-programs  can  be  written  in 

thousands of  programming-languages,  each language differs 

1
Department of Mathematics and Computer Science, The Open 

University of Israel, 1 University Road, POB 808, Raanana 43537, 

Israel. Email: uri.pincas@openu.ac.il.

from others by characteristics of semantics, syntax, purposes 

and usages. Here we focus on the notion of computer-program 

in general. 

As  in  the  case  of  'Algorithm',  the  term  of  'Computer-

Program' is very basic and long-discussed, but exact definition 

and characterization of its meaning are still in dispute (see, for 

example,  [20],  [30],  [8];  see also [27]  for  other  issues  and 

sources dealing with many aspects of the subject). 

Then  again,  we  will  refer  here  to  a  "common-sense" 

characterization of the term: by 'Computer-Program' we mean 

an  ordered  set  of  instructions  in  some  computer-language, 

which  are  to  be  run  on  some  computing-environment 

(computer-system)  in  order  to  perform some  task  (see,  for 

example, [15], chapter 3). 

3 FIRST CONSIDERATION OF THE 

RELATION BETWEEN ALGORITHMS AND 

COMPUTER-PROGRAMS

When  primarily  considering  'Algorithm'  and  'Computer-

Program' as related to each other,  two conspicuous features 

may be noticed (see, for example, [10]):

• One is the more theoretical or abstract nature of the 

algorithm compared with the more practical or "down-to-

earth" nature of the program. As described here above, 

computer-programs  are  written  in  some  specific 

computer-language and are to be (or at least are supposed 

to  be  capable  of  being)  run  and  executed  on  some 

concrete  computing-environment;  while  algorithms  are 

more  theoretical  objects,  not  tied  to  such  a  specific 

operational environment, and so can be described in a far 

more  general  and  abstract  manner,  with  much  fewer 

limitations of practical contexts.

• A second  feature  is  the  fact  that  the  algorithm 

precedes the program. It means that when someone is to 

design,  write  and  run  a  computer-program in  order  to 

perform some task, he or she is very likely to start by 

designing  (or  taking  an  already-designed)  algorithm 

which  accomplishes  this  task  on  the  principal 

algorithmic-conceptual  level,  and  then  construct  the 

program by the lines of that algorithm. 

These  two features  may be summarized  by saying  that  the 

computer-program is an implementation of the algorithm2. 

2
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and we would not dwell on all the interesting philosophical aspects of 

the matter here.



4 SOME MORE REFLECTIONS ON 

ALGORITHMS AND COMPUTER-

PROGRAMS 

Reconsidering  the  issue  may  help  us  understand  it  more 

deeply. Every algorithm (as well as every computer-program) 

is composed of operations, each of which is considered to be 

elementary,  i.e.  assumed to  be understood  and executed  by 

itself, without having to be divided to more basic operations. 

Characterizing such operations as elementary depends on the 

adopted computational model, which is taken as the general 

frame of computation. Many of the "canonical" computational 

models are equivalent, in the sense that the set of computable 

functions  of  one  model  is  the  same as  of  any  other  of  its 

equivalents  (see,  for  example,  [6]).  However,  this  does  not 

mean that the elementary operations of every model are the 

same as of any of its equivalent; and so the way of performing 

some computation,  by constructing the required algorithmic 

object from basic operational building-blocks, in two different 

computational  models  can  be  different  (see  [4],  [17],  [23], 

[31])3. 

Adopting  some  computational  model  for  designing 

algorithms is sometimes taken to be carried out "once and in 

advance" (indeed, methodologically such manner of thinking 

may be convenient and fertile in some contexts), but we can 

notice that in practice this is not the case, since having some 

model taken and accepted as a computational framework is a 

dynamic  multi-stage  process.  Conventions  of  a  "suitable" 

computational model stem from some theoretical background 

and are  adopted as  a  general  primary frame of  algorithmic 

praxis;  when  some  practice  of  designing  and  constructing 

algorithms  (and  their  implementations)  is  exercised  and 

shaped, conventions of "suitable" elementary operations and 

their  organization  in  algorithmic  schemes,  as  well  as 

principles,  methods  and  criterions  for  evaluation  and 

improvement of the "quality" of such schemes, are recreated, 

formed and accepted. Such a phase of formation of an "actual" 

algorithmic  model—based  on  a  theoretical  computational 

model,  but  not  identical  with  it,  as  it  is  characterized  and 

practiced on a different level—is not single, because as more 

algorithmic work is continued to be done, more changes of the 

algorithmic model do take place. It is true that most of these 

changes may be described as minor and not revolutionary, but 

nevertheless  they  make  some  epistemic  and  operational 

difference. 

In  this  context,  some  historical  note  might  be  in  place. 

Significant interest  in research of the algorithmic problems, 

solutions and processes as a body of knowledge (what might 

be  considered  as  the  theory  of  algorithms)  arouse  with 

interests in the essence and foundations of mathematics—and 

so in reflexive mathematical processes—around the end of the 

19th century, continuing intensively to the first decades of the 

20th century.  The  mathematical  and logical  research  of  that 

time  focused  on  general  properties  of  mathematical  and 

axiomatic systems and on processes within their frameworks, 

.  
3
It is interesting to note the (peculiar?) fact that some of these very 

canonical equivalent  computational  models have been emerged and 

developed  at  about  the  same  time  from different  (intersecting  and 

overlapping) directions.  For a historic survey and discussion of this 

issue, see [11].

not on ("quantitative") analysis of detailed operativity of such 

processes. This second kind of interest arouse and was largely 

developed later, with the acceptance and establishment of the 

computational model of Turing as a general characterization 

of  computing,  on  one  hand,  and  with  a  lot  of  practical 

motivations to improve and make efficient  the performance 

of  computational  processes,  on  the  other  hand  (see,  for 

example, [7] and [22], chapter 6). 

Having  this  in  mind,  we  should  note  that  computer-

programs,  as  described  here  above,  are  implementations  of 

algorithms, and so are essentially entangled with many aspects 

of practical business. This makes them a considerable factor 

of shaping the model-frame of algorithm design. And so we 

can consider here a relation of "computer-programs effecting 

algorithms", in the opposite direction, so to speak, of the one 

mentioned here at part 3, of "algorithms effecting computer-

programs". 

5 EXAMPLES OF "COMPUTER-

PROGRAMS EFFECTING ALGORITHMS"

5.1  FIRST  EXAMPLE—ARITHMETICAL 

COMPUTATIONS  AND  ELECTRONIC 

ELEMENTS 

One example is the development of algorithms and computer-

programs for arithmetical computations. A typical basic usage 

of  electronic  computers  is,  very  naturally,  arithmetic 

computation. For performing such a computation, algorithms 

which compute the required result  by "ordinary" arithmetic 

manner can be designed (and then implemented as computer-

programs for actually carrying out the computation).  

However,  in  the  early  "computer-era"  of  the  forties  and 

fifties  of  the  20th  century,  a  computer-operation  of 

multiplication  was  considered  as  "expensive",  compared  to 

the relatively "cheap" operation of addition (due to electronic 

features of the construction and operation of the computers of 

those  times).  As  a  result  of  that,  actual  programs  run  on 

computers  were preferred to  perform fewer multiplications, 

even in the price of preforming many more additions.  This 

condition  led  to  the  designing  of  different  arithmetic 

algorithms with more additions and fewer multiplications, not 

only  in  sporadic  cases  but  as  a  general  paradigm  of  the 

computerized arithmetic computation area (see, for example, 

[12], part III).  

Nowadays,  as  addition  and  multiplication  operations  are 

considered  as  equally  priced  (since  the  electronics  of 

computers  has  considerably  changed),  this  paradigm  is  no 

longer  valid—there  is  no  actual  advantage  by  saving 

multiplications  on  the  expense  of  extra  additions—and 

algorithms  and  computer-programs  for  arithmetic 

computations are designed by different considerations.

5.2  SECOND  EXAMPLE—MEASURING 

COMPUTATIONAL  COMPLEXITY  AND 

COMPUTER-PROGRAMMING PRACTICE

Another  example  is  our  evaluation  of  the  efficiency  of 

algorithms  and  computer-programs.  Different  (equal  and 



simultaneously evolved) developments of characterizations of 

the term 'Computable'—i.e., different computational model—

have  been  the  basis  of  the  theory  of  "hardness  of 

computation",  which has later  been rooted as the theory of 

complexity of algorithms.  Important  mathematical works in 

the fifties of the 20th century, like [13] and [25], characterized 

(some  sense  of)  computational  complexity  by  relating  to 

certain  mathematical  properties  (such  as  the  degree  of 

recursiveness);  but  later  on  these  characterizations  were 

formed  and  reformed  as  the  more  modern  senses  of 

computational measures by considering algorithm efficiency. 

There are different meanings of 'Computational Complexity', 

and so there are different ways to measure the efficiency of 

algorithms and complexity-measures of different kinds (see, 

for  example,  [22],  chapter  6).  Two  of  the  more  common 

complexity-measures  are  time  complexity—the  number  of 

basic  operations  which  the  algorithm  executes—and  space 

complexity—the  number  of  memory-units  which  the 

algorithm requires4. 

    Which of these two measures (and of other complexity-

measures  as  well)  is  to  be  considered  as  the  more 

representative  for  algorithm efficiency?  The  answer  to  this 

question was motivated by "actual" computing and evaluation 

of  computer-programs  in  practice.  Again,  back  in  the  first 

days  of  electronic  computers,  computer-programs  were 

relatively  short  and  simple,  and  the  time  taken  for  most 

computer-programs to run was less important a factor than the 

storage they had to use, which was expensive. In such state of 

affairs,  space complexity  was a  candidate for the dominant 

measure of computer-program (and algorithm) efficiency. As 

computing  technology  evolved  and  developed,  computer-

storage  became  relatively  cheap,  but  the  programs  became 

longer  and  more  complicated  in  a  manner  which  made 

computing-time  a  more  valuable  resource.  This  being  the 

situation,  as  computer-programs  were  attempted  to  be  less 

time-consuming, and, accordingly, algorithms were designed 

to have fewer operations, time complexity became the most 

dominant and common measure for efficiency, and remains so 

up until nowadays5 (see [2]). 

    The  effect  of  the  practical  "preponderance  of  time"  is 

evident  in  following  developments  in  the  theory  of 

computational complexity, as criteria of time-complexity have 

become  the  characterization  of  algorithms—and  naturally 

afterwards of computational problems—as "reasonable", i.e., 

fulfilling the task (for algorithm) or capable of being solved 

(for  problems)  in  what  is  to  be  considered  as  "realistic" 

conditions  or  limitations.  Polynomial  number  of  basic 

instructions, related to as polynomial time, has been set as the 

standard limit for reasonability in this sense, based on typical 

considerations of the computing practice of running computer-

programs  (see,  for  example,  [5],  [9],  [16],  [1]).  The 

4
These  two  measures  are  of  the  category  known  as  dynamic  (or 

operational)  complexity  measures—measures  which  relate  to  the 

behavioural  of  the  algorithm  as  a  computation  being  performed. 

Another  kind  is  static  (or  definitional)  complexity  measures—

measures  which  relate  to  properties  of  the  algorithmic  text  as  a 

description of the computation (like, for example, the length of the 

character-string  which  describes  the  algorithm) (see,  for  example, 

[2]).
5
Somewhat  interesting,  in  this  context,  may  be  the  saying  (whose 

origin  is  not  clear)  that  time is  more  of  an important  (computing) 

resource than space, since space, contrary to time, is reusable.

momentous definitions of computational complexity classes, 

such as  P,  NP,  NPC and  many more,  which have become 

some fundamental business of the theory of computer-science, 

is  a  natural  continuation  of  this  characterization  of 

reasonability by time-complexity sense (see also [18], [29]). 

6 SUMMARY AND CONCLUSION  

Here  we  considered  the  relation  between  algorithms  and 

computer-programs by characterizing the terms on different 

levels. First we looked at the basic semantic level, considering 

somewhat simple context of the terms; by that we noticed sort 

of  a  one-directional  relation  between  the  two,  taking  each 

program, by itself, to "come after" and to "put into practice" 

some algorithm, in the sense mentioned above of being the 

algorithm's implementation. Later we examined the subject in 

a  broader  perspective,  taking  into  consideration  some 

elements  in  the  multi-context  dynamics  of  algorithm  and 

computer-program  processes;  by  that  we  noticed  that  the 

relation  between  the  (dynamic,  ever-changing)  realms  of 

programs and algorithms is much more intricate and manifold. 

    We might end this paper by calling for recognition and 

examination of other and more elements which take part of 

the  complex  interrelationship  between  these  two  realms, 

influencing the relation between the terms as well as useful 

and illuminative for its characterization.
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