
White Paper

Copyright © 2016 ARM Limited or its affiliates. All rights reserved.

Page 1 of 19

The DSP capabilities of ARM®
Cortex®-M4 and Cortex-M7
Processors

DSP feature set and benchmarks

Thomas Lorenser

November 2016

White Paper

Copyright © 2016 ARM Limited or its affiliates. All rights reserved.

Page 2 of 19

Table of Contents

Introduction .. 3

Digital Signal Controllers combine MCU and DSP capabilities .. 3

Cortex-M4/Cortex-M7 ISA supporting efficient DSP operations .. 4

Data types ... 5

Instruction set for arithmetic, SIMD and floating-point .. 6

DSP techniques used on Cortex-M4 and Cortex-M7 .. 8

Fast Fourier Transforms (FFT) ... 10

FIR Filter ... 13

Understanding the performance differences .. 14

Conclusion .. 14

Appendix .. 15
Arithmetic instructions ... 15
SIMD instructions ... 16
Floating-point instructions ... 17

Trademarks ... 19

White Paper

Copyright © 2016 ARM Limited or its affiliates. All rights reserved.

Page 3 of 19

Introduction
As we see the spectacular growth in the number of autonomous, intelligent, and connected devices (i.e. smart
embedded, the Internet of Things, or IoT), which are required to operate in a low-power environment, manufacturers
are increasingly turning to place the ARM Cortex-M4 and Cortex-M7 processors at the heart of these devices. Such
applications previously used a simple Microcontroller (MCU) based on Cortex-M0 or Cortex-M3 together with a
separate proprietary, dedicated Digital Signal Processor (DSP). More and more OEMs are switching to a single, high-
performance, low power MCU with DSP extensions, such as Cortex-M4 or Cortex-M7, to replace the two processor
design.

This has a number of advantages for OEMs. It can save significantly on the BOM costs of their products, by replacing
two processors with one, and a reduction in system-level complexity by removing the need for shared memory, MCU
and DSP communication, complex multiprocessor bus architectures and other custom “glue” logic between the MCU
and DSP. It also has the advantages of reducing software development costs, as the entire project can be supported
using a single compiler/debugger/IDE, and benefits from being programmable in a high-level programming language such
as C or C++, rather than the handcrafted assembler often used for a proprietary DSP.

ARM’s Digital Signal Controllers, Cortex-M4 and Cortex-M7, address the need for high-performance generic code
processing as well as digital signal processing applications. The key feature of the Cortex-M4 and Cortex-M7
processors is the addition of DSP extensions to the Thumb instruction set, as defined in ARM’s architecture ARMv7-M
and the optional floating-point unit (FPU). These instructions are designed to help improve the performance of
numerical algorithms and provide the opportunity to perform signal processing operations directly on the Cortex-M4
and Cortex-M7.

This whitepaper describes the DSP features of ARM’s Digital Signal Controllers, Cortex-M4 and Cortex-M7, explains
how they are employed in the CMSIS DSP Library (a free-of-charge library of DSP functions optimized for the Cortex-
M4 and Cortex-M7 processors), and presents some benchmark results on well-known DSP algorithms.

Digital Signal Controllers combine MCU and DSP capabilities
MCUs are traditionally designed to offer general-purpose computation and efficient control flow, whilst integrating with
a variety of low power memory types (such as Flash and SRAM), and providing very rapid reaction to external interrupt
sources. Such an MCU may include a wide variety of peripherals built-in such as USB, Ethernet, Analog-to-Digital
convertors, UARTs, SPI interfaces, timers and so on. As MCUs can be used in a wide variety of applications, and sell in
the billions of units, they are also supported by a large number of RTOSes, compilers, debuggers, IDEs and middleware.

DSPs, on the other hand, are traditionally designed with multiple memory buses, allowing computation and memory
accesses to be performed in parallel. This supports the rapid throughput of data, with typical operations such as
multiplication and accumulate (commonly known as multiply-accumulate, or MAC) to be performed efficiently on that
data with minimal overhead. This is further helped by providing such features as:

• Zero overhead loops
• Single-cycle MACs
• Circular memory addressing
• Accumulators with guard bits
• Fractional and saturating arithmetic

These features allow a DSP to execute numerically-intensive algorithms in real time, which is why they were originally
deployed in military radar and sonar processing, and later started to be used in a wide variety of consumer devices that
demanded efficient signal processing, such as audio, voice recognition and image enhancement.

White Paper

Copyright © 2016 ARM Limited or its affiliates. All rights reserved.

Page 4 of 19

ARM’s Cortex-M4 and Cortex-M7 processors are Digital Signal Controllers (DSC), providing a blend of traditional
MCU and DSP functionality in a single instruction set working in the same bank of general-purpose 32-bit registers. The
important feature to note is that the DSP functionality is built right into the ISA, rather than being implemented via a co-
processor interface. Both of these processors also have an optional floating-point unit that fully supports the IEEE-754
standard, with the Cortex-M4 offering single-precision floating point support and the Cortex-M7 supporting single-
precision and double-precision floating-point. Hence Cortex-M4 and Cortex-M7 offer efficient processing of signal
processing algorithms.

Cortex-M4/Cortex-M7 ISA supporting efficient DSP operations
This section provides a brief overview of the instructions implemented by Cortex-M4 and Cortex-M7, which accelerate
DSP algorithms. The goal is not to include all such instructions (which can be found in the Generic User Guides for
Cortex-M4 at https://developer.arm.com/docs/dui0553/b and Cortex-M7 at https://developer.arm.com/docs/dui0646/a),
but to highlight which instructions are most often used in practice.

While Cortex-M4 and Cortex-M7 can be used in DSP applications for both fixed-point and floating-point operations,
the DSP extension is optimized for fixed-point applications. Floating-point operations are accelerated using the optional
floating-point unit.

As the Cortex-M4 and Cortex-M7 processor have instructions that are carefully designed to support high-level
languages, C compilers are able to choose the most efficient instructions without additional help. In some cases, we use
idioms - sections of C code which are recognized by a compiler as mapping directly to underlying assembly instructions.
Finally, in some cases – particularly with Single Instruction Multiple Data (SIMD) instructions - the compilers are not
always able to efficiently utilize the instruction set when compiling C code. In this case, we have to provide the compiler
with explicit guidance using intrinsics.

General purpose and special registers

The Cortex-M4 and Cortex-M7 processors have a core register bank consisting of 16 32-bit registers. The lower 13
registers, R0-R12, are general purpose and can hold intermediate variables, pointers, function arguments, and return
results. The upper 3 registers are reserved by the architecture and given a particular role.

R0 to R12 – General purpose
R13 – Stack pointer [reserved]
R14 – Link register [reserved]
R15 – Program counter [reserved]

When compiling code, the compiler will try to allocate the available registers efficiently to local variables and function
arguments, but if it runs out of general-purpose registers, it will need to spill intermediate values onto the stack, causing
a slowdown in performance. This can be mitigated for most DSP functions using the CMSIS DSP library (described on
page 11), which has been carefully designed to take care of register usage.

Registers using the optional floating-point unit

The optional floating-point unit (FPU) on the Cortex-M4 and Cortex-M7 has its own bank of registers consisting of 32
32-bit registers that can be accessed as single-precision FPU registers (labelled S0 to S31), or accessed as a pair of
double-precision registers (labelled as d0 to d15). The integer registers R0 to R12 are still available to hold integer
variables, giving a total of 45 registers that can be used by the C compiler. It is expected that C compilers only use R0
to R12 for non-floating point data processing. Typically floating-point operations use more processor cycles than their

White Paper

Copyright © 2016 ARM Limited or its affiliates. All rights reserved.

Page 5 of 19

integer equivalents, but are much faster than emulating floating point via integer operations. Sometimes a smart
compiler is able to use the floating-point registers as data storage to accelerate algorithms that are running out of
integer registers, but this can come as a cost of impact to interrupt latency. Additionally, compilers can natively create
code by leveraging the float instructions without using intrinsics.

Data types
The header files in ARM’s freely available CMSIS DSP Library define data based on C99, fixed with integer types to
support a variety of integer, floating-point, and fractional data types, as shown in the tables below. In addition, the
library header files also define fractional data types (q7_t, q15_t, etc):

Signed	
 Integers	
 	
 	

int8_t	
 8-­‐bit	

int16_t	
 16-­‐bit	

int32_t	
 32-­‐bit	

int64_t	
 64-­‐bit	

Unsigned	
 Integers	
 	
 	

uint8_t	
 8-­‐bit	

uint16_t	
 16-­‐bit	

uint32_t	
 32-­‐bit	

uint64_t	
 64-­‐bit	

Fractional	
 	
 	

q7_t	
 8-­‐bit	

q15_t	
 16-­‐bit	

q31_t	
 32-­‐bit	

q63_t	
 64-­‐bit	

Floating	
 point	
 	
 	

float32_t	
 SP	
 32-­‐bit	

float64_t	
 DP	
 64-­‐bit	

Fig. 1 Data Types in the CMSIS DSP Library

White Paper

Copyright © 2016 ARM Limited or its affiliates. All rights reserved.

Page 6 of 19

Instruction set for arithmetic, SIMD and floating-point

Arithmetic instructions

There are a number of arithmetic instructions for integer and fractional datatypes supported by the Cortex-M4 and
Cortex-M7 which are most frequently used in DSP algorithms.

The instructions vary on how they are emitted by a C compiler. In some cases, the compiler determines the correct
instruction to use based on standard C code. For example, fractional addition is performed using:

z = x + y;

In other cases, the compiler recognizes a number of standard “idioms”, which are C expressions commonly used in DSP
algorithms, and maps them to the appropriate instruction. For example, to swap bytes 0 and 1, and 2 and 3 of a 32-bit
word, use the idiom

(((x&0xff)<<8)¦((x&0xff00)>>8)¦((x&0xff000000)>>8)¦((x&0x00ff0000)<<8));

The compiler recognizes this and maps it to a single REV16 instruction.

And finally, in some cases there is no C construct that maps to the underlying instruction and the instruction can only
be invoked via an intrinsic. For example, to do a saturating 32-bit addition use

z = __QADD(x, y);

Check your compiler documentation to see which idioms are supported and how they map to Cortex-M instructions.

The appendix gives a more detailed description of some of the arithmetic instructions provided in the Cortex-M4 and
Cortex-M7 processors that are used to optimize well-known DSP algorithms. The instructions use either signed or
unsigned integer format, the data representation using fractional dataypes may require some additional bit shift
operations. Please visit the Devices Generic User Guide for Cortex-M4 and Cortex-M7 for a full list of arithmetic
instructions.

All of the instructions are single-cycle on Cortex-M4 (except hardware divide), and may well be dual-issued in parallel
with other instructions on Cortex-M7, thus further reducing the cycle count for DSP inner loops and other
performance critical code.

SIMD instructions

The Cortex-M4 and Cortex-M7 provide SIMD instructions that operate on 8- or 16-bit integers. All registers are still
32-bits wide, but the SIMD instructions operate on 2 x 16-bit values or 4 x 8-bit values at a time within a 32-bit register.

8-bit 8-bit 8-bit 8-bit

16-bit 16-bit

32-bit

Fig. 2 One 32-bit word can hold 2x16-bit values or 4x8-bit values

White Paper

Copyright © 2016 ARM Limited or its affiliates. All rights reserved.

Page 7 of 19

Instructions that work on 8- or 16-bit data types are useful for processing data such as video or audio, as they do not
require full 32-bit precision. The SIMD instructions allow these 2 x 16-bit or 4 x 8-bit operations to be performed in
parallel.

To use the SIMD instructions from C code, you load values into int32_t variables (ie 32bit registers) and then invoke
the corresponding SIMD intrinsic instructions, for example:

int32_t x, y, z;
y = <some value>;
x = <some value>;
z = __SADD16(x, y);

This will perform two 16-bit signed additions in parallel, leaving the result in z.

Some examples of SIMD instructions are QADD8/QSUB8, QADD16/QSUB16 among others. The appendix gives a
more detailed description of some of the SIMD instructions, including quad 8-bit and dual 16-bit instructions. Please visit
the Devices Generic User Guide for Cortex-M4 and Cortex-M7 for a full list of SIMD instructions.

Floating-point instructions

Cortex-M4 and Cortex-M7 support floating-point instructions for single-precision (Cortex-M4) and single-precision, or
single-precision and double-precision (Cortex-M7) if the optional floating-point unit is implemented. The supported
datatype for these instructions either float32 (for a single-precision implementation) or float64 (for double-precision
implementation).

Floating-point instructions include multiplication, floating-point to integer comparison, division and square root. The
appendix gives a more detailed description of some of the floating-point instructions. Please visit the Devices Generic
User Guide for Cortex-M4 and Cortex-M7 for a full list of floating-point instructions.

White Paper

Copyright © 2016 ARM Limited or its affiliates. All rights reserved.

Page 8 of 19

CMSIS DSP library

The CMSIS-DSP library is a suite of common signal processing and mathematical functions that have been optimized for
the Cortex-M4 and Cortex-M7 processors. The library is freely available as part of the CMSIS release from ARM and
includes all source code. The functions in the library are divided into several categories:

1. Basic math functions
2. Fast math functions
3. Complex math functions
4. Filters
5. Matrix functions
6. Transforms
7. Motor control functions
8. Statistical functions
9. Support functions
10. Interpolation functions

The library has separate functions for operating on 8-bit integers, 16-bit integers, 32-bit integers, and 32-bit floating-
point values.

The library has been optimized to take advantage of the DSP extensions found in the Cortex-M4 and Cortex-M7
processors. The CMSIS DSP Library can also be used on the Cortex-M3 processor although it doesn’t provide the
additional extensions to accelerate DSP algorithms. In the results presented later in this paper, we show the significant
performance difference between the same DSP algorithms when run on the Cortex-M3, Cortex-M4 and Cortex-M7
processors.

DSP techniques used on Cortex-M4 and Cortex-M7
Some features of a traditional DSP are not present on the Cortex-M4 and Cortex-M7 processors, so in the CMSIS DSP
Library we use programming techniques to best use the available features of the Cortex-M architecture.

One example of this is the use of circular addressing when processing buffers of input and output data. Most DSPs have
a memory architecture which automatically wraps around at the end of a buffer. The Cortex-M4 and Cortex-M7
processors address memory as a flat linear address space, so in the CMSIS DSP library we use a FIFO and shift the data
in the FIFO once per block of data. This reduces the data movement overhead by a factor of the input sample size. It
also means that we do not incur the overhead of checking the index value every time round an inner processing loop.

White Paper

Copyright © 2016 ARM Limited or its affiliates. All rights reserved.

Page 9 of 19

h[0]h[1]h[2]h[3]h[4]h[5]h[6]

x[n]x[n-1]x[n-2]x[n-3]x[n-4]x[n-5]x[n-6]x[n-7]x[n-8]x[n-9]

4 new input samples are
shifted in

For example in the diagram above, we assume a block size of four samples. Input data is shifted in on the right side of
the block. The oldest data then appears on the left hand side.

A traditional DSP also will normally have the ability to execute loops with no loop overhead. On Cortex-M4 and
Cortex-M7 we use loop unrolling in the inner loops of the algorithms in the CMSIS DSP library to minimise the loop
overheads. In fact, we find that the level of unrolling between Cortex-M4 and Cortex-M7 is different – we have tended
to unroll more on Cortex-M7 and to interleave load and arithmetic operations.

The Cortex-M4 has up to three cycle overhead per loop iteration. Unrolling a loop by a factor of N effectively reduces
the loop overhead to 3/N cycles per iteration. This can be a considerable savings in cycle count especially if the inner
loop consists of only a few instructions. Loop unrolling also allows you to group-load and store instructions together,
as well as reorder floating-point instructions to avoid the one cycle stall penalties in such operations.

You can either manually unroll a loop by repeating a set of instructions or by having the compiler do it for you. The
compiler in Keil MDK (Microcontroller Development Kit) supports pragmas, which guide the operation of the compiler.
For example, to instruct the compiler to unroll a loop use,

#pragma unroll
for(i= 0; i < L; i++)
 {
 ...
 }

By default, the loop will be unrolled by a factor of four. This pragma can be used with for, while, and do-while loops.
Specifying #pragma unroll(N) causes the loop to be unrolled N times.

Because the Cortex-M7 processor has a branch target address cache use in conjunction with its branch predictor, it can
reduce loop overhead even further.

You will notice that the CMSIS-DSP library has separate versions of some of its DSP functions for Cortex-M4 and
Cortex-M7. This is because the Cortex-M7 has a six-stage, dual-issue pipeline compared to the simpler three-stage
pipeline of the Cortex-M4. Due to this difference, the Cortex-M4 benefits from grouping all loads together at the
beginning of a critical loop, then performing the arithmetic operations, then storing results back to memory; however,
the Cortex-M7 benefits from interleaving the load, arithmetic, store operations for maximizing dual issue capability.
The Cortex-M7 may also be able to execute some of the load instructions in parallel, thus reducing memory latency.

Fig. 3 FIFO used instead of circular buffer

White Paper

Copyright © 2016 ARM Limited or its affiliates. All rights reserved.

Page 10 of 19

Fast Fourier Transforms (FFT)
Within the CMSIS-DSP Library, there are a number of optimised functions for computing the FFT of an input sample
using a variety of data types such as Q7, Q15, Q31, F32.

Fundamentally, the FFT is a fast way of calculating the discrete Fourier transform of an input stream of length N, given
by the equation:

𝑋 𝑘 = 𝑥 𝑛 𝑊!
!"

!!!

!!!

, 𝑘 = 0, 1, 2,… ,𝑁 − 1

where 𝑊!
! is a complex value representing the 𝑘!! root of unity:

𝑊!
! = 𝑒!!!!"/! = cos 2𝜋𝑘/𝑁 − 𝑗 sin 2𝜋𝑘/𝑁 .

The CMSIS DSP library uses a variant of a decimation-in-frequency algorithm, which is implemented by a series of
“butterfly” calculations, where each butterfly includes a complex addition, subtraction and multiplication – all of which
can be performed in place in memory. The result of all such algorithms is that the output becomes bit-reversed, and
the CMSIS DSP Library functions provide an option for the output to be reordered back into sequential order.

Implementations of FFT algorithms normally use either radix-2 or radix-4 techniques to operate on either two or four
complex values at a time, depending on the size of the input sample. In the latest version of the CMSIS DSP Library, the
FFT functions will automatically choose the appropriate technique given the input sample size, without the user being
expected to make that choice.

In the table below, we present the results of running a Complex FFT for 32-bit input data (Q31) with block size varying
from 32 to 1024. All values in the table are cycle counts (hence small values are better). Below this table we also
present a graph showing a comparison of the performance of these algorithms, focussing on input sizes from 128 to
1024. We have not included the 32 and 64 input sizes in the graph as they result in the graph having bars which are too
tiny to read!

You can see that the DSP capabilities of the Cortex-M4 give a significant speed-up compared to Cortex-M3, and that
Cortex-M7 gives even further speed-up due to its dual-issue 6-stage pipeline. The results for Q15 data are not
presented here but show that there is an even greater speed-up for the Q15 data, as the Cortex-M4 and Cortex-M7
are able to make maximum use of their SIMD capabilities.

	

Block	
 Size	

CFFT	
 Q31	
 32	
 64	
 128	
 256	
 512	
 1024	

	
 	
 	
 	
 	
 	
 	
 Cortex-­‐M3	
 3374	
 6695	
 18549	
 36779	
 94267	
 187204	

Cortex-­‐M4	
 2577	
 5282	
 13823	
 28000	
 69253	
 139898	

Cortex-­‐M7	
 1497	
 3235	
 8050	
 17235	
 41076	
 87128	

Fig. 4 Full table for Complex FFT with Q31 data type

White Paper

Copyright © 2016 ARM Limited or its affiliates. All rights reserved.

Page 11 of 19

Fig. 5 Graph showing selection of results for Complex FFT with Q31 data type

The CMSIS DSP Library also contains optimised functions for Real FFT on similar data type inputs, and we present the
cycle counts for these in the tables and graphs below.

	
 Block	
 Size	

RFFT	
 Q31	
 32	
 64	
 128	
 256	
 512	
 1024	

	
 	
 	
 	
 	
 	
 	

Cortex-­‐M3	
 2996	
 7274	
 14499	
 34161	
 68007	
 156715	

Cortex-­‐M4	
 1561	
 3825	
 7714	
 18623	
 37536	
 88261	

Cortex-­‐M7	
 954	
 2221	
 4431	
 10403	
 21157	
 48870	

Fig. 6 Full table for Real FFT with Q31 data type

0

50000

100000

150000

200000

128 256 512 1024

C
yc

le
s

Input size

CFFT Q31

Cortex-M3

Cortex-M4

Cortex-M7

White Paper

Copyright © 2016 ARM Limited or its affiliates. All rights reserved.

Page 12 of 19

The CMSIS DSP Library also contains optimised functions for Complex and Real FFT working on 32-bit floating point
data (F32). You can see from the table below that the Cortex-M4 and Cortex-M7 benefit greatly from the presence of
the hardware FPU – on the Cortex-M3 all floating point calculations have to be emulated using integer operations on
integer registers, resulting in a 20x difference between Cortex-M3 and Cortex-M7.

	

Block	
 Size	

RFFT	
 F32	
 32	
 64	
 128	
 256	
 512	
 1024	

	
 	
 	
 	
 	
 	
 	
 Cortex-­‐M3	
 16183	
 37990	
 83077	
 192984	
 431366	
 920012	

Cortex-­‐M4	
 1697	
 3487	
 5909	
 14285	
 30457	
 55538	

Cortex-­‐M7	
 962	
 2044	
 3675	
 8726	
 19297	
 36337	

Fig. 7 Graph showing selection of results for Complex FFT with Q31 data type

Fig. 8 Full table for Real FFT with F32 data type

0

50000

100000

150000

200000

250000

128 256 512 1024

C
yc

le
s

Input size

RFFT Q31

Cortex-M3

Cortex-M4

Cortex-M7

White Paper

Copyright © 2016 ARM Limited or its affiliates. All rights reserved.

Page 13 of 19

FIR Filter
Also included in the CMSIS DSP Library are functions to perform an FIR filter (Finite Impulse Response), which is used
in a wide variety of audio, video, control and data analysis applications. The advantages of using an FIR filter are that it is
stable for all coefficients (compared to IIR filters) and can be implemented using a fixed-point approach.

The filter takes a series of input values which represent the signal at time “n”, denoted here by x[n], and producing an
output value at time “n”, denoted here by y[n]. the output values are calculated using the following difference equation:

𝑦 𝑛 = 𝑥 𝑛 − 𝑘 ℎ 𝑘
!!!

!!!

where ℎ 𝑘 are the filter coefficients. In the difference equation above, the FIR filter has N coefficients

ℎ 0 , ℎ 1 ,⋯ , ℎ 𝑁 − 1

and the output is computed using N previous input samples

𝑥 𝑛 , 𝑥 𝑛 − 1 ,⋯ , 𝑥 𝑛 − (𝑁 − 1)

The implementations of FIR filters in the CMSIS DSP library use the FIFO technique described above to implement the
equivalent of a circular buffer. Each output of the filter requires N multiplications and N-1 additions.

Fig. 9 Graph showing selection of results for Real FFT with F32 data type

0

10000

20000

30000

40000

50000

60000

128 256 512 1024

C
yc

ke
s

Input size

RFFT F32

Cortex-M4

Cortex-M7

White Paper

Copyright © 2016 ARM Limited or its affiliates. All rights reserved.

Page 14 of 19

For FIR filters we talk of the number of TAPs applied to the filter. The number of TAPs simply means the number of
coefficient/input pairs; the greater the number of TAPs, the more attenuation and the “narrower” the filter, and the
more computation that needs to be performed.

Understanding the performance differences
From the results, we can see that the DSP support instructions in Cortex-M4 and Cortex-M7 bring considerable
performance advantages compared to the Cortex-M3, which is a small processor focused on a range of generic data
processor and control applications. The support of a floating point unit in Cortex-M4 and Cortex-M7 also brings a
significant increase in performance in a range of DSP applications that need floating point data processing.

Comparing Cortex-M4 and Cortex-M7 processors, it is also noticeable that the Cortex-M7 processor has even more
performance. This is due to a number of factors:

- Cortex-M7 can execute up to two instruction per clock cycle (dual issue capability)
- Cortex-M7 has dynamic branch predication
- The floating point unit in Cortex-M7 is designed to support higher floating point processing capability

As a result, the Digital Signal Controller Cortex-M7 can deliver both high performance for generic control code as well
as high DSP performance in a range of DSP applications, allowing chip designers to replace a range of dual core designs
(generic processor + DSP) with a single processor.

Conclusion
This paper covered the DSP features of the Cortex-M4 and Cortex-M7, and has shown how they can be applied to DSP
algorithms. They can use the DSP extensions to the Thumb instruction set and programming techniques to match
features found in a traditional DSP.

We have presented some tables of benchmark results that show how the DSP extensions of Cortex-M4 accelerate the
performance of DSP algorithms compared to Cortex-M3, and how the dual-issue capabilities of Cortex-M7 deliver even
higher performance on these algorithms.

As markets move more towards streaming, connectivity, and interactive user interfaces, there will be an increasing
demand for performance in low power, embedded devices. Using a single microcontroller with DSP capabilities, rather
than a lower performance microcontroller with separate DSP, reduces BOM cost, system-level complexity and software
development costs and timescales.

We expect that an ever-increasing number of consumer devices will benefit from the high performance, low power and
low-latency response of the Cortex-M4 and Cortex-M7 processors, and future processors from the Cortex-M family.

White Paper

Copyright © 2016 ARM Limited or its affiliates. All rights reserved.

Page 15 of 19

Appendix

Arithmetic instructions
The instructions listed below use either signed or unsigned integer format, the data representation using fractional
dataypes may require some additional bit shift operations.

SMULL – Long signed multiply

Multiplies two 32-bit integers and returns a 64-bit result. This is useful for computing products of fractional data while
maintaining high precision.

SMLAL – Long signed multiply accumulate

Multiplies two 32-bit integers and adds the 64-bit result to a 64-bit accumulator. This is useful for computing MACs of
fractional data and maintaining high precision.

SSAT – Signed saturation

Saturates a signed x integer to a specified bit position B. The result is saturated to the range

−2!!! ≤ 𝑥 ≤ 2!!! − 1

where B=1, 2, …, 32.

SMMUL - 32-bit multiply returning 32-most-significant-bits

Signed multiplication (if result is left shifted by 1 bit). Multiplies two 32-bit integers, generates a 64-bit result, and then
returns the high 32-bits of the result.

SMMLA - 32-bit multiply with 32-most-significant-bit accumulate

Signed multiply accumulate. Multiplies two 32-bit integers, generates a 64-bit result, and adds the high bits of the result
to a 32-bit accumulator.

QADD – 32-bit saturating addition

Adds two signed integers (or fractional integers) and saturates the result. Positive values are saturated to 0x7FFFFFFF
and negative values are saturated to 0x80000000; overflow does not occur.

SDIV – 32-bit division

Divides two 32-bit values and returns a 32-bit result (it takes up to 16 clock cycles).

SMLABB - Q setting 16-bit signed multiply with 32-bit accumulate, bottom by bottom

Multiplies the low 16-bits of two registers and adds the result to a 32-bit accumulator. If an overflow occurs during the
addition then the result will wrap.

SMLATB - Q setting 16-bit signed multiply with 32-bit accumulate, top by bottom

Multiplies the low 16-bits of two registers and adds the result to a 32-bit accumulator. If an overflow occurs during the
addition then the result will wrap.

White Paper

Copyright © 2016 ARM Limited or its affiliates. All rights reserved.

Page 16 of 19

SMLABT - Q setting 16-bit signed multiply with 32-bit accumulate, bottom by top

Multiplies the low 16-bits of two registers and adds the result to a 32-bit accumulator. If an overflow occurs during the
addition then the result will wrap.

SMLATT - Q setting 16-bit signed multiply with 32-bit accumulate, top by top

Multiplies the low 16-bits of two registers and adds the result to a 32-bit accumulator. If an overflow occurs during the
addition then the result will wrap.

SMLAD/SMLADX - Q setting dual 16-bit signed multiply with single 32-bit accumulator

Multiplies two signed 16-bit values and adds both results to a 32-bit accumulator. If an overflow occurs during the
addition then the result will wrap. SMLADX crosses over the top and bottom halves in the multiplications.

SMLALBB - 16-bit signed multiply with 64-bit accumulate, bottom by bottom

Multiplies the low 16-bits of two registers and adds the result to a 64-bit accumulator.

SMLALTB - 16-bit signed multiply with 64-bit accumulate, top by bottom

Multiplies the low 16-bits of two registers and adds the result to a 64-bit accumulator.

SMLALBT - 16-bit signed multiply with 64-bit accumulate, bottom by top

Multiplies the low 16-bits of two registers and adds the result to a 64-bit accumulator.

SMLALTT - 16-bit signed multiply with 64-bit accumulate, top by top

Multiplies the low 16-bits of two registers and adds the result to a 64-bit accumulator.

SMLALD/SMLALDX - Dual 16-bit signed multiply with single 64-bit accumulator

Performs two 16-bit multiplications and adds both results to a 64-bit accumulator. If overflow occurs during the
accumulation then the result wraps. SMLALDX crosses over the top and bottom halves in the multiplications.

SIMD instructions
QADD8/QSUB8 – Quad 8-bit saturating addition/subtraction

Adds/subtracts four 8-bit values using SIMD. If overflow occurs then the result is saturated. Positive values are
saturated to 0x7F and negative values are saturated to 0x80.

QADD16/QSUB16 – Dual 16-bit saturating addition/subtraction

Adds/subtracts two 16-bit values using SIMD. If overflow occurs then the result is saturated. Positive values are
saturated to 0x7FFF and negative values are saturated to 0x8000.

SADD8/SSUB8 – Quad 8-bit addition/subtraction

Adds/subtracts four 8-bit values using SIMD. If overflow occurs then the result wraps around.

SADD16/SSUB16 – Dual 16-bit addition/subtraction

White Paper

Copyright © 2016 ARM Limited or its affiliates. All rights reserved.

Page 17 of 19

Adds/subtracts two 16-bit values using SIMD. If overflow occurs then the result wraps around.

SSAT16 - Dual 16-bit saturate

Saturates two signed 16-bit values to bit position B. The resulting values are saturated to the range

−2!!! ≤ 𝑥 ≤ 2!!! − 1

where B = 1, 2, … 16.

SADD16 – Dual 16-bit addition

Adds two 16-bit values using SIMD. If overflow occurs then the result wraps around.

QADD16 – Dual 16-bit saturating addition

Adds two 16-bit values using SIMD. If overflow occurs then the result is saturated. Positive values are saturated to
0x7FFF and negative values are saturated to 0x8000.

Floating-point instructions

VABS – Floating-point absolute value

Provides absolute value of a floating-point register. Supported datatype is float32 (single-precision) or float64 (dual-
precision)

VADD – Floating-point addition

Adds two floating-point registers into a destination floating-point register. Supported datatype is float32 (single-
precision) or float64 (double-precision)

VCMP and VCMPE – Floating-point comparison of registers or zero

Compares either two floating-point registers (VCMP), or one floating-point register and zero (VCMPE). The result is
wriiten to the FPSCR flag. Supported datatype is float32 (single-precision) or float64 (double-precision)

VCVT and VCVTR – Floating-point conversion from and to 32-bit integer

Converts a floating-point value to 32-bit integer (VCVT), or converts 32-bit integer to floating-point (VCVTR). The
instruction VCVT can also be used for floating-point to fixed-point conversion using fractional dataytpes. Supported
datatype is float32 (single-precision) or float64 (double-precision)

VCVTB and VCVTT – Floating-point conversion to half, single or double-precision

Converts the half-precision value in the top or bottom half of a single-precision register to single-precision or double-
precision value. Supported datatype is float32 (single-precision) or float64 (double-precision)

VMAXNM and VMINNM – Return maximum or minimum of two floating-point numbers

White Paper

Copyright © 2016 ARM Limited or its affiliates. All rights reserved.

Page 18 of 19

Returns the maximum or minimum of two floating-point numbers. Supported datatype is float32 (single-precision) or
float64 (double-precision)

VRINTR and VRINTX – Round floating-point to an integer in floating-point format

Round a floating-point value to an integer in floating-point format. Supported datatype is float32 (single-precision) or
float64 (double-precision)

VMLA/VMLS– Floating-point multiply and accumulate

Multiplies two floating-point values and accumulates or subtracts the result. Supported datatype is float32 (single-
precision) or float64 (double-precision)

VMUL – Floating-point multiply

Multiplies two floating-point values. Supported datatype is float32 (single-precision) or float64 (double-precision)

VNMLA/VNMLS – multiply with negation followed by add or subtract

Multiplies two floating-point register values and adds the negation of the floating-point value in the destination register
to the negation (for VNMLA, if VNMLS then no negation) of the product, then store the negation of the result to
destination register. Supported datatype is float32 (single-precision) or float64 (double-precision)

VDIV – Division of floating-point values

Divides one floating-point value by another floating-point value. Supported datatype is float32 (single-precision) or
float64 (double-precision)

VSQRT – Square root of a floating-point value

Calculates the square root of the value in a floating-point register. Supported datatype is float32 (single-precision) or
float64 (double-precision)

White Paper

Copyright © 2016 ARM Limited or its affiliates. All rights reserved.

Page 19 of 19

Trademarks
The trademarks featured in this document are registered and/or unregistered trademarks of ARM Limited (or its
subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their
respective owners. For more information, visit arm.com/about/trademarks.

