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Introduction 
As we see the spectacular growth in the number of autonomous, intelligent, and connected devices (i.e. smart 
embedded, the Internet of Things, or IoT), which are required to operate in a low-power environment, manufacturers 
are increasingly turning to place the ARM Cortex-M4 and Cortex-M7 processors at the heart of these devices.  Such 
applications previously used a simple Microcontroller (MCU) based on Cortex-M0 or Cortex-M3 together with a 
separate proprietary, dedicated Digital Signal Processor (DSP). More and more OEMs are switching to a single, high-
performance, low power MCU with DSP extensions, such as Cortex-M4 or Cortex-M7, to replace the two processor 
design. 
 
This has a number of advantages for OEMs.  It can save significantly on the BOM costs of their products, by replacing 
two processors with one, and a reduction in system-level complexity by removing the need for shared memory, MCU 
and DSP communication, complex multiprocessor bus architectures and other custom “glue” logic between the MCU 
and DSP.  It also has the advantages of reducing software development costs, as the entire project can be supported 
using a single compiler/debugger/IDE, and benefits from being programmable in a high-level programming language such 
as C or C++, rather than the handcrafted assembler often used for a proprietary DSP. 
 
ARM’s Digital Signal Controllers, Cortex-M4 and Cortex-M7, address the need for high-performance generic code 
processing as well as digital signal processing applications.  The key feature of the Cortex-M4 and Cortex-M7 
processors is the addition of DSP extensions to the Thumb instruction set, as defined in ARM’s architecture ARMv7-M 
and the optional floating-point unit (FPU).  These instructions are designed to help improve the performance of 
numerical algorithms and provide the opportunity to perform signal processing operations directly on the Cortex-M4 
and Cortex-M7. 
 
This whitepaper describes the DSP features of ARM’s Digital Signal Controllers, Cortex-M4 and Cortex-M7, explains 
how they are employed in the CMSIS DSP Library (a free-of-charge library of DSP functions optimized for the Cortex-
M4 and Cortex-M7 processors), and presents some benchmark results on well-known DSP algorithms. 

Digital Signal Controllers combine MCU and DSP capabilities 
MCUs are traditionally designed to offer general-purpose computation and efficient control flow, whilst integrating with 
a variety of low power memory types (such as Flash and SRAM), and providing very rapid reaction to external interrupt 
sources.  Such an MCU may include a wide variety of peripherals built-in such as USB, Ethernet, Analog-to-Digital 
convertors, UARTs, SPI interfaces, timers and so on.  As MCUs can be used in a wide variety of applications, and sell in 
the billions of units, they are also supported by a large number of RTOSes, compilers, debuggers, IDEs and middleware. 

DSPs, on the other hand, are traditionally designed with multiple memory buses, allowing computation and memory 
accesses to be performed in parallel.  This supports the rapid throughput of data, with typical operations such as 
multiplication and accumulate (commonly known as multiply-accumulate, or MAC) to be performed efficiently on that 
data with minimal overhead.  This is further helped by providing such features as: 

• Zero overhead loops 
• Single-cycle MACs 
• Circular memory addressing 
• Accumulators with guard bits 
• Fractional and saturating arithmetic 

These features allow a DSP to execute numerically-intensive algorithms in real time, which is why they were originally 
deployed in military radar and sonar processing, and later started to be used in a wide variety of consumer devices that 
demanded efficient signal processing, such as audio, voice recognition and image enhancement. 
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ARM’s Cortex-M4 and Cortex-M7 processors are Digital Signal Controllers (DSC), providing a blend of traditional 
MCU and DSP functionality in a single instruction set working in the same bank of general-purpose 32-bit registers.  The 
important feature to note is that the DSP functionality is built right into the ISA, rather than being implemented via a co-
processor interface.  Both of these processors also have an optional floating-point unit that fully supports the IEEE-754 
standard, with the Cortex-M4 offering single-precision floating point support and the Cortex-M7 supporting single-
precision and double-precision floating-point. Hence Cortex-M4 and Cortex-M7 offer efficient processing of signal 
processing algorithms. 

Cortex-M4/Cortex-M7 ISA supporting efficient DSP operations 
This section provides a brief overview of the instructions implemented by Cortex-M4 and Cortex-M7, which accelerate 
DSP algorithms.  The goal is not to include all such instructions (which can be found in the Generic User Guides for 
Cortex-M4 at https://developer.arm.com/docs/dui0553/b and Cortex-M7 at https://developer.arm.com/docs/dui0646/a), 
but to highlight which instructions are most often used in practice.  

While Cortex-M4 and Cortex-M7 can be used in DSP applications for both fixed-point and floating-point operations, 
the DSP extension is optimized for fixed-point applications. Floating-point operations are accelerated using the optional 
floating-point unit.  

As the Cortex-M4 and Cortex-M7 processor have instructions that are carefully designed to support high-level 
languages, C compilers are able to choose the most efficient instructions without additional help.  In some cases, we use 
idioms - sections of C code which are recognized by a compiler as mapping directly to underlying assembly instructions.  
Finally, in some cases – particularly with Single Instruction Multiple Data (SIMD) instructions - the compilers are not 
always able to efficiently utilize the instruction set when compiling C code. In this case, we have to provide the compiler 
with explicit guidance using intrinsics. 

General purpose and special registers  

The Cortex-M4 and Cortex-M7 processors have a core register bank consisting of 16 32-bit registers.  The lower 13 
registers, R0-R12, are general purpose and can hold intermediate variables, pointers, function arguments, and return 
results.  The upper 3 registers are reserved by the architecture and given a particular role. 

R0 to R12 – General purpose 
R13 – Stack pointer   [reserved] 
R14 – Link register   [reserved] 
R15 – Program counter [reserved] 

When compiling code, the compiler will try to allocate the available registers efficiently to local variables and function 
arguments, but if it runs out of general-purpose registers, it will need to spill intermediate values onto the stack, causing 
a slowdown in performance.  This can be mitigated for most DSP functions using the CMSIS DSP library (described on 
page 11), which has been carefully designed to take care of register usage. 

Registers using the optional floating-point unit 

The optional floating-point unit (FPU) on the Cortex-M4 and Cortex-M7 has its own bank of registers consisting of 32 
32-bit registers that can be accessed as single-precision FPU registers (labelled S0 to S31), or accessed as a pair of 
double-precision registers (labelled as d0 to d15).  The integer registers R0 to R12 are still available to hold integer 
variables, giving a total of 45 registers that can be used by the C compiler.  It is expected that C compilers only use R0 
to R12 for non-floating point data processing. Typically floating-point operations use more processor cycles than their 
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integer equivalents, but are much faster than emulating floating point via integer operations.  Sometimes a smart 
compiler is able to use the floating-point registers as data storage to accelerate algorithms that are running out of 
integer registers, but this can come as a cost of impact to interrupt latency. Additionally, compilers can natively create 
code by leveraging the float instructions without using intrinsics. 

Data types  
The header files in ARM’s freely available CMSIS DSP Library define data based on C99, fixed with integer types to 
support a variety of integer, floating-point, and fractional data types, as shown in the tables below. In addition, the 
library header files also define fractional data types (q7_t, q15_t, etc): 

Signed	
  Integers	
   	
  	
  
int8_t	
   8-­‐bit	
  
int16_t	
   16-­‐bit	
  
int32_t	
   32-­‐bit	
  
int64_t	
   64-­‐bit	
  

 

Unsigned	
  Integers	
   	
  	
  
uint8_t	
   8-­‐bit	
  
uint16_t	
   16-­‐bit	
  
uint32_t	
   32-­‐bit	
  
uint64_t	
   64-­‐bit	
  

 

Fractional	
   	
  	
  
q7_t	
   8-­‐bit	
  
q15_t	
   16-­‐bit	
  
q31_t	
   32-­‐bit	
  
q63_t	
   64-­‐bit	
  

 

Floating	
  point	
   	
  	
  
float32_t	
   SP	
  32-­‐bit	
  
float64_t	
   DP	
  64-­‐bit	
  

 

 
  

Fig. 1  Data Types in the CMSIS DSP Library 
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Instruction set for arithmetic, SIMD and floating-point 
 
Arithmetic instructions 

There are a number of arithmetic instructions for integer and fractional datatypes supported by the Cortex-M4 and 
Cortex-M7 which are most frequently used in DSP algorithms.  

The instructions vary on how they are emitted by a C compiler.  In some cases, the compiler determines the correct 
instruction to use based on standard C code.  For example, fractional addition is performed using: 

z = x + y; 

In other cases, the compiler recognizes a number of standard “idioms”, which are C expressions commonly used in DSP 
algorithms, and maps them to the appropriate instruction.  For example, to swap bytes 0 and 1, and 2 and 3 of a 32-bit 
word, use the idiom 

(((x&0xff)<<8)¦((x&0xff00)>>8)¦((x&0xff000000)>>8)¦((x&0x00ff0000)<<8)); 

The compiler recognizes this and maps it to a single REV16 instruction. 

And finally, in some cases there is no C construct that maps to the underlying instruction and the instruction can only 
be invoked via an intrinsic.  For example, to do a saturating 32-bit addition use 

z = __QADD(x, y); 

Check your compiler documentation to see which idioms are supported and how they map to Cortex-M instructions. 

The appendix gives a more detailed description of some of the arithmetic instructions provided in the Cortex-M4 and 
Cortex-M7 processors that are used to optimize well-known DSP algorithms. The instructions use either signed or 
unsigned integer format, the data representation using fractional dataypes may require some additional bit shift 
operations.  Please visit the Devices Generic User Guide for Cortex-M4 and Cortex-M7 for a full list of arithmetic 
instructions.  

All of the instructions are single-cycle on Cortex-M4 (except hardware divide), and may well be dual-issued in parallel 
with other instructions on Cortex-M7, thus further reducing the cycle count for DSP inner loops and other 
performance critical code. 

SIMD instructions 

The Cortex-M4 and Cortex-M7 provide SIMD instructions that operate on 8- or 16-bit integers.  All registers are still 
32-bits wide, but the SIMD instructions operate on 2 x 16-bit values or 4 x 8-bit values at a time within a 32-bit register. 

 

 

 

8-bit 8-bit 8-bit 8-bit

16-bit 16-bit

32-bit

Fig. 2  One 32-bit word can hold 2x16-bit values or 4x8-bit values 
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Instructions that work on 8- or 16-bit data types are useful for processing data such as video or audio, as they do not 
require full 32-bit precision.  The SIMD instructions allow these 2 x 16-bit or 4 x 8-bit operations to be performed in 
parallel. 

To use the SIMD instructions from C code, you load values into int32_t variables (ie 32bit registers) and then invoke 
the corresponding SIMD intrinsic instructions, for example: 

 
int32_t x, y, z; 
y = <some value>; 
x = <some value>; 
z = __SADD16(x, y); 

This will perform two 16-bit signed additions in parallel, leaving the result in z. 

Some examples of SIMD instructions are QADD8/QSUB8, QADD16/QSUB16 among others. The appendix gives a 
more detailed description of some of the SIMD instructions, including quad 8-bit and dual 16-bit instructions. Please visit 
the Devices Generic User Guide for Cortex-M4 and Cortex-M7 for a full list of SIMD instructions. 

Floating-point instructions 

Cortex-M4 and Cortex-M7 support floating-point instructions for single-precision (Cortex-M4) and single-precision, or 
single-precision and double-precision (Cortex-M7) if the optional floating-point unit is implemented. The supported 
datatype for these instructions either float32 (for a single-precision implementation) or float64 (for double-precision 
implementation).  

Floating-point instructions include multiplication, floating-point to integer comparison, division and square root. The 
appendix gives a more detailed description of some of the floating-point instructions. Please visit the Devices Generic 
User Guide for Cortex-M4 and Cortex-M7 for a full list of floating-point instructions. 
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CMSIS DSP library 

The CMSIS-DSP library is a suite of common signal processing and mathematical functions that have been optimized for 
the Cortex-M4 and Cortex-M7 processors.  The library is freely available as part of the CMSIS release from ARM and 
includes all source code.  The functions in the library are divided into several categories: 

1. Basic math functions 
2. Fast math functions 
3. Complex math functions 
4. Filters 
5. Matrix functions 
6. Transforms 
7. Motor control functions 
8. Statistical functions 
9. Support functions 
10. Interpolation functions 

The library has separate functions for operating on 8-bit integers, 16-bit integers, 32-bit integers, and 32-bit floating-
point values. 

The library has been optimized to take advantage of the DSP extensions found in the Cortex-M4 and Cortex-M7 
processors.  The CMSIS DSP Library can also be used on the Cortex-M3 processor although it doesn’t provide the 
additional extensions to accelerate DSP algorithms.  In the results presented later in this paper, we show the significant 
performance difference between the same DSP algorithms when run on the Cortex-M3, Cortex-M4 and Cortex-M7 
processors. 

DSP techniques used on Cortex-M4 and Cortex-M7 
Some features of a traditional DSP are not present on the Cortex-M4 and Cortex-M7 processors, so in the CMSIS DSP 
Library we use programming techniques to best use the available features of the Cortex-M architecture. 

One example of this is the use of circular addressing when processing buffers of input and output data.  Most DSPs have 
a memory architecture which automatically wraps around at the end of a buffer.  The Cortex-M4 and Cortex-M7 
processors address memory as a flat linear address space, so in the CMSIS DSP library we use a FIFO and shift the data 
in the FIFO once per block of data.  This reduces the data movement overhead by a factor of the input sample size.  It 
also means that we do not incur the overhead of checking the index value every time round an inner processing loop. 
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h[0]h[1]h[2]h[3]h[4]h[5]h[6]

x[n]x[n-1]x[n-2]x[n-3]x[n-4]x[n-5]x[n-6]x[n-7]x[n-8]x[n-9]

4 new input samples are 
shifted in

 

 

 

For example in the diagram above, we assume a block size of four samples.  Input data is shifted in on the right side of 
the block.  The oldest data then appears on the left hand side. 

A traditional DSP also will normally have the ability to execute loops with no loop overhead.  On Cortex-M4 and 
Cortex-M7 we use loop unrolling in the inner loops of the algorithms in the CMSIS DSP library to minimise the loop 
overheads.  In fact, we find that the level of unrolling between Cortex-M4 and Cortex-M7 is different – we have tended 
to unroll more on Cortex-M7 and to interleave load and arithmetic operations. 

The Cortex-M4 has up to three cycle overhead per loop iteration.  Unrolling a loop by a factor of N effectively reduces 
the loop overhead to 3/N cycles per iteration.  This can be a considerable savings in cycle count especially if the inner 
loop consists of only a few instructions.  Loop unrolling also allows you to group-load and store instructions together, 
as well as reorder floating-point instructions to avoid the one cycle stall penalties in such operations. 

You can either manually unroll a loop by repeating a set of instructions or by having the compiler do it for you.  The 
compiler in Keil MDK (Microcontroller Development Kit) supports pragmas, which guide the operation of the compiler.  
For example, to instruct the compiler to unroll a loop use, 

#pragma unroll 
for(i= 0; i < L; i++) 
    { 
     ... 
    } 

By default, the loop will be unrolled by a factor of four.  This pragma can be used with for, while, and do-while loops.  
Specifying #pragma unroll(N) causes the loop to be unrolled N times. 

Because the Cortex-M7 processor has a branch target address cache use in conjunction with its branch predictor, it can 
reduce loop overhead even further. 

You will notice that the CMSIS-DSP library has separate versions of some of its DSP functions for Cortex-M4 and 
Cortex-M7.  This is because the Cortex-M7 has a six-stage, dual-issue pipeline compared to the simpler three-stage 
pipeline of the Cortex-M4.  Due to this difference, the Cortex-M4 benefits from grouping all loads together at the 
beginning of a critical loop, then performing the arithmetic operations, then storing results back to memory; however, 
the Cortex-M7 benefits from interleaving the load, arithmetic, store operations for maximizing dual issue capability.  
The Cortex-M7 may also be able to execute some of the load instructions in parallel, thus reducing memory latency. 

Fig. 3  FIFO used instead of circular buffer 
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Fast Fourier Transforms (FFT) 
Within the CMSIS-DSP Library, there are a number of optimised functions for computing the FFT of an input sample 
using a variety of data types such as Q7, Q15, Q31, F32. 

Fundamentally, the FFT is a fast way of calculating the discrete Fourier transform of an input stream of length N, given 
by the equation: 

𝑋 𝑘 = 𝑥 𝑛 𝑊!
!"

!!!

!!!

, 𝑘 = 0, 1, 2,… ,𝑁 − 1 

where 𝑊!
! is a complex value representing the 𝑘!!  root of unity: 

𝑊!
! = 𝑒!!!!"/! = cos 2𝜋𝑘/𝑁 − 𝑗 sin 2𝜋𝑘/𝑁 . 

The CMSIS DSP library uses a variant of a decimation-in-frequency algorithm, which is implemented by a series of 
“butterfly” calculations, where each butterfly includes a complex addition, subtraction and multiplication – all of which 
can be performed in place in memory.  The result of all such algorithms is that the output becomes bit-reversed, and 
the CMSIS DSP Library functions provide an option for the output to be reordered back into sequential order. 

Implementations of FFT algorithms normally use either radix-2 or radix-4 techniques to operate on either two or four 
complex values at a time, depending on the size of the input sample.  In the latest version of the CMSIS DSP Library, the 
FFT functions will automatically choose the appropriate technique given the input sample size, without the user being 
expected to make that choice. 

In the table below, we present the results of running a Complex FFT for 32-bit input data (Q31) with block size varying 
from 32 to 1024. All values in the table are cycle counts (hence small values are better).  Below this table we also 
present a graph showing a comparison of the performance of these algorithms, focussing on input sizes from 128 to 
1024.  We have not included the 32 and 64 input sizes in the graph as they result in the graph having bars which are too 
tiny to read! 

You can see that the DSP capabilities of the Cortex-M4 give a significant speed-up compared to Cortex-M3, and that 
Cortex-M7 gives even further speed-up due to its dual-issue 6-stage pipeline.  The results for Q15 data are not 
presented here but show that there is an even greater speed-up for the Q15 data, as the Cortex-M4 and Cortex-M7 
are able to make maximum use of their SIMD capabilities. 

 

	
  
Block	
  Size	
  

CFFT	
  Q31	
   32	
   64	
   128	
   256	
   512	
   1024	
  

	
   	
   	
   	
   	
   	
   	
  Cortex-­‐M3	
   3374	
   6695	
   18549	
   36779	
   94267	
   187204	
  
Cortex-­‐M4	
   2577	
   5282	
   13823	
   28000	
   69253	
   139898	
  
Cortex-­‐M7	
   1497	
   3235	
   8050	
   17235	
   41076	
   87128	
  

 

 

 

Fig. 4  Full table for Complex FFT with Q31 data type 



White Paper 

 
Copyright © 2016 ARM Limited or its affiliates. All rights reserved.  
 
Page 11 of 19 

 

Fig. 5 Graph showing selection of results for Complex FFT with Q31 data type 

 

The CMSIS DSP Library also contains optimised functions for Real FFT on similar data type inputs, and we present the 
cycle counts for these in the tables and graphs below. 

 

	
   Block	
  Size	
  
RFFT	
  Q31	
   32	
   64	
   128	
   256	
   512	
   1024	
  

	
   	
   	
   	
   	
   	
   	
  
Cortex-­‐M3	
   2996	
   7274	
   14499	
   34161	
   68007	
   156715	
  
Cortex-­‐M4	
   1561	
   3825	
   7714	
   18623	
   37536	
   88261	
  
Cortex-­‐M7	
   954	
   2221	
   4431	
   10403	
   21157	
   48870	
  

 

 
Fig. 6  Full table for Real FFT with Q31 data type 

0 

50000 

100000 

150000 

200000 

128 256 512 1024 

C
yc

le
s 

Input size 

CFFT Q31 

Cortex-M3 

Cortex-M4 

Cortex-M7 



White Paper 

 
Copyright © 2016 ARM Limited or its affiliates. All rights reserved.  
 
Page 12 of 19 

 

 

 

The CMSIS DSP Library also contains optimised functions for Complex and Real FFT working on 32-bit floating point 
data (F32).  You can see from the table below that the Cortex-M4 and Cortex-M7 benefit greatly from the presence of 
the hardware FPU – on the Cortex-M3 all floating point calculations have to be emulated using integer operations on 
integer registers, resulting in a 20x difference between Cortex-M3 and Cortex-M7. 

 

	
  
Block	
  Size	
  

RFFT	
  F32	
   32	
   64	
   128	
   256	
   512	
   1024	
  

	
   	
   	
   	
   	
   	
   	
  Cortex-­‐M3	
   16183	
   37990	
   83077	
   192984	
   431366	
   920012	
  
Cortex-­‐M4	
   1697	
   3487	
   5909	
   14285	
   30457	
   55538	
  
Cortex-­‐M7	
   962	
   2044	
   3675	
   8726	
   19297	
   36337	
  

 

 

Fig. 7  Graph showing selection of results for Complex FFT with Q31 data type 

Fig. 8  Full table for Real FFT with F32 data type 

0 

50000 

100000 

150000 

200000 

250000 

128 256 512 1024 

C
yc

le
s 

Input size 

RFFT Q31 

Cortex-M3 

Cortex-M4 

Cortex-M7 



White Paper 

 
Copyright © 2016 ARM Limited or its affiliates. All rights reserved.  
 
Page 13 of 19 

 

 
 
 

FIR Filter 
Also included in the CMSIS DSP Library are functions to perform an FIR filter (Finite Impulse Response), which is used 
in a wide variety of audio, video, control and data analysis applications.  The advantages of using an FIR filter are that it is 
stable for all coefficients (compared to IIR filters) and can be implemented using a fixed-point approach. 
 
The filter takes a series of input values which represent the signal at time “n”, denoted here by x[n], and producing an 
output value at time “n”, denoted here by y[n].  the output values are calculated using the following difference equation: 

𝑦 𝑛 = 𝑥 𝑛 − 𝑘 ℎ 𝑘
!!!

!!!

 

where ℎ 𝑘  are the filter coefficients.  In the difference equation above, the FIR filter has N coefficients 

ℎ 0 , ℎ 1 ,⋯ , ℎ 𝑁 − 1  

and the output is computed using N previous input samples 

𝑥 𝑛 , 𝑥 𝑛 − 1 ,⋯ , 𝑥 𝑛 − (𝑁 − 1)  

 
The implementations of FIR filters in the CMSIS DSP library use the FIFO technique described above to implement the 
equivalent of a circular buffer.  Each output of the filter requires N multiplications and N-1 additions. 
 

Fig. 9  Graph showing selection of results for Real FFT with F32 data type 
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For FIR filters we talk of the number of TAPs applied to the filter.  The number of TAPs simply means the number of 
coefficient/input pairs; the greater the number of TAPs, the more attenuation and the “narrower” the filter, and the 
more computation that needs to be performed. 

Understanding the performance differences 
From the results, we can see that the DSP support instructions in Cortex-M4 and Cortex-M7 bring considerable 
performance advantages compared to the Cortex-M3, which is a small processor focused on a range of generic data 
processor and control applications.  The support of a floating point unit in Cortex-M4 and Cortex-M7 also brings a 
significant increase in performance in a range of DSP applications that need floating point data processing. 

Comparing Cortex-M4 and Cortex-M7 processors, it is also noticeable that the Cortex-M7 processor has even more 
performance. This is due to a number of factors: 

- Cortex-M7 can execute up to two instruction per clock cycle (dual issue capability) 
- Cortex-M7 has dynamic branch predication 
- The floating point unit in Cortex-M7 is designed to support higher floating point processing capability 

As a result, the Digital Signal Controller Cortex-M7 can deliver both high performance for generic control code as well 
as high DSP performance in a range of DSP applications, allowing chip designers to replace a range of dual core designs 
(generic processor + DSP) with a single processor.  

Conclusion 
This paper covered the DSP features of the Cortex-M4 and Cortex-M7, and has shown how they can be applied to DSP 
algorithms. They can use the DSP extensions to the Thumb instruction set and programming techniques to match 
features found in a traditional DSP. 

We have presented some tables of benchmark results that show how the DSP extensions of Cortex-M4 accelerate the 
performance of DSP algorithms compared to Cortex-M3, and how the dual-issue capabilities of Cortex-M7 deliver even 
higher performance on these algorithms. 

As markets move more towards streaming, connectivity, and interactive user interfaces, there will be an increasing 
demand for performance in low power, embedded devices.  Using a single microcontroller with DSP capabilities, rather 
than a lower performance microcontroller with separate DSP, reduces BOM cost, system-level complexity and software 
development costs and timescales. 

We expect that an ever-increasing number of consumer devices will benefit from the high performance, low power and 
low-latency response of the Cortex-M4 and Cortex-M7 processors, and future processors from the Cortex-M family. 
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Appendix 

Arithmetic instructions 
The instructions listed below use either signed or unsigned integer format, the data representation using fractional 
dataypes may require some additional bit shift operations. 

SMULL – Long signed multiply 

Multiplies two 32-bit integers and returns a 64-bit result.  This is useful for computing products of fractional data while 
maintaining high precision. 

SMLAL – Long signed multiply accumulate 

Multiplies two 32-bit integers and adds the 64-bit result to a 64-bit accumulator.  This is useful for computing MACs of 
fractional data and maintaining high precision. 

SSAT – Signed saturation 

Saturates a signed x integer to a specified bit position B.  The result is saturated to the range 

−2!!! ≤ 𝑥 ≤ 2!!! − 1 

where B=1, 2, …, 32.  

SMMUL - 32-bit multiply returning 32-most-significant-bits 

Signed multiplication (if result is left shifted by 1 bit).  Multiplies two 32-bit integers, generates a 64-bit result, and then 
returns the high 32-bits of the result.   

SMMLA - 32-bit multiply with 32-most-significant-bit accumulate 

Signed multiply accumulate.  Multiplies two 32-bit integers, generates a 64-bit result, and adds the high bits of the result 
to a 32-bit accumulator.   

QADD – 32-bit saturating addition 

Adds two signed integers (or fractional integers) and saturates the result.  Positive values are saturated to 0x7FFFFFFF 
and negative values are saturated to 0x80000000; overflow does not occur. 

SDIV – 32-bit division 

Divides two 32-bit values and returns a 32-bit result  (it takes up to 16 clock cycles). 

SMLABB - Q setting 16-bit signed multiply with 32-bit accumulate, bottom by bottom 

Multiplies the low 16-bits of two registers and adds the result to a 32-bit accumulator.  If an overflow occurs during the 
addition then the result will wrap.   

SMLATB - Q setting 16-bit signed multiply with 32-bit accumulate, top by bottom 

Multiplies the low 16-bits of two registers and adds the result to a 32-bit accumulator.  If an overflow occurs during the 
addition then the result will wrap.   
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SMLABT - Q setting 16-bit signed multiply with 32-bit accumulate, bottom by top 

Multiplies the low 16-bits of two registers and adds the result to a 32-bit accumulator.  If an overflow occurs during the 
addition then the result will wrap.   

SMLATT - Q setting 16-bit signed multiply with 32-bit accumulate, top by top 

Multiplies the low 16-bits of two registers and adds the result to a 32-bit accumulator.  If an overflow occurs during the 
addition then the result will wrap.   

SMLAD/SMLADX - Q setting dual 16-bit signed multiply with single 32-bit accumulator 

Multiplies two signed 16-bit values and adds both results to a 32-bit accumulator.  If an overflow occurs during the 
addition then the result will wrap.   SMLADX crosses over the top and bottom halves in the multiplications. 

SMLALBB - 16-bit signed multiply with 64-bit accumulate, bottom by bottom 

Multiplies the low 16-bits of two registers and adds the result to a 64-bit accumulator. 

SMLALTB - 16-bit signed multiply with 64-bit accumulate, top by bottom 

Multiplies the low 16-bits of two registers and adds the result to a 64-bit accumulator. 

SMLALBT - 16-bit signed multiply with 64-bit accumulate, bottom by top 

Multiplies the low 16-bits of two registers and adds the result to a 64-bit accumulator. 

SMLALTT - 16-bit signed multiply with 64-bit accumulate, top by top 

Multiplies the low 16-bits of two registers and adds the result to a 64-bit accumulator. 

SMLALD/SMLALDX - Dual 16-bit signed multiply with single 64-bit accumulator 

Performs two 16-bit multiplications and adds both results to a 64-bit accumulator.  If overflow occurs during the 
accumulation then the result wraps. SMLALDX crosses over the top and bottom halves in the multiplications. 

 

SIMD instructions 
QADD8/QSUB8 – Quad 8-bit saturating addition/subtraction 

Adds/subtracts four 8-bit values using SIMD.  If overflow occurs then the result is saturated.  Positive values are 
saturated to 0x7F and negative values are saturated to 0x80. 

QADD16/QSUB16 – Dual 16-bit saturating addition/subtraction 

Adds/subtracts two 16-bit values using SIMD.  If overflow occurs then the result is saturated.  Positive values are 
saturated to 0x7FFF and negative values are saturated to 0x8000. 

SADD8/SSUB8 – Quad 8-bit addition/subtraction 

Adds/subtracts four 8-bit values using SIMD.  If overflow occurs then the result wraps around. 

SADD16/SSUB16 – Dual 16-bit addition/subtraction 
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Adds/subtracts two 16-bit values using SIMD.  If overflow occurs then the result wraps around. 

SSAT16 - Dual 16-bit saturate 

Saturates two signed 16-bit values to bit position B.  The resulting values are saturated to the range 

−2!!! ≤ 𝑥 ≤ 2!!! − 1 

where B = 1, 2, … 16. 

SADD16 – Dual 16-bit addition 

Adds two 16-bit values using SIMD.  If overflow occurs then the result wraps around. 

QADD16 – Dual 16-bit saturating addition 

Adds two 16-bit values using SIMD.  If overflow occurs then the result is saturated.  Positive values are saturated to 
0x7FFF and negative values are saturated to 0x8000. 

 

Floating-point instructions 
 

VABS – Floating-point absolute value 

Provides absolute value of a floating-point register. Supported datatype is float32 (single-precision) or float64 (dual-
precision) 

VADD – Floating-point addition 

Adds two floating-point registers into a destination floating-point register. Supported datatype is float32 (single-
precision) or float64 (double-precision) 

VCMP and VCMPE – Floating-point comparison of registers or zero 

Compares either two floating-point registers (VCMP), or one floating-point register and zero (VCMPE). The result is 
wriiten to the FPSCR flag. Supported datatype is float32 (single-precision) or float64 (double-precision) 

VCVT and VCVTR – Floating-point conversion from and to 32-bit integer 

Converts a floating-point value to 32-bit integer (VCVT), or converts 32-bit integer to floating-point (VCVTR). The 
instruction VCVT can also be used for floating-point to fixed-point conversion using fractional dataytpes. Supported 
datatype is float32 (single-precision) or float64 (double-precision) 

VCVTB and VCVTT – Floating-point conversion to half, single or double-precision 

Converts the half-precision value in the top or bottom half of a single-precision register to single-precision or double-
precision value. Supported datatype is float32 (single-precision) or float64 (double-precision) 

VMAXNM and VMINNM – Return maximum or minimum of two floating-point numbers  
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Returns the maximum or minimum of two floating-point numbers. Supported datatype is float32 (single-precision) or 
float64 (double-precision) 

VRINTR and VRINTX – Round floating-point to an integer in floating-point format  

Round a floating-point value to an integer in floating-point format. Supported datatype is float32 (single-precision) or 
float64 (double-precision) 

VMLA/VMLS– Floating-point multiply and accumulate 

Multiplies two floating-point values and accumulates or subtracts the result. Supported datatype is float32 (single-
precision) or float64 (double-precision) 

VMUL – Floating-point multiply 

Multiplies two floating-point values. Supported datatype is float32 (single-precision) or float64 (double-precision) 

VNMLA/VNMLS – multiply with negation followed by add or subtract 

Multiplies two floating-point register values and adds the negation of the floating-point value in the destination register 
to the negation (for VNMLA, if VNMLS then no negation) of the product, then store the negation of the result to 
destination register. Supported datatype is float32 (single-precision) or float64 (double-precision) 

VDIV – Division of floating-point values 

Divides one floating-point value by another floating-point value. Supported datatype is float32 (single-precision) or 
float64 (double-precision) 

VSQRT – Square root of a floating-point value 

Calculates the square root of the value in a floating-point register. Supported datatype is float32 (single-precision) or 
float64 (double-precision) 
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Trademarks 
The trademarks featured in this document are registered and/or unregistered trademarks of ARM Limited (or its 
subsidiaries) in the EU and/or elsewhere.  All rights reserved.  All other marks featured may be trademarks of their 
respective owners. For more information, visit arm.com/about/trademarks. 

 


